Что происходит в митозе. Фазы митоза: их характеристика. Значение митотического деления клеток

Митоз - процесс деления клетки, при котором её строение подвергается существенным изменениям, возникновением новых структур и реализацией строго определенных стадий.

При митозе дочерние клетки получают диплоидный набор хромосом и такое же количество ядерного вещества, которое характерно для нормально функционирующей соматической родительской клетки.Митоз осуществляется при размножении соматических (клеток тела) клеток, например, в меристемах (тканях роста) растений или в активных зонах деления у животных (в кроветворных органах, в коже и т. д.). Для животных организмов состояние деления характерно в молодом возрасте, но оно может осуществляться и в зрелом возрасте в соответствующих органах (кожа, органы кроветворения и др.).

Митоз представляет собой последовательность строго определенных процессов, которые протекают по стадиям. Митоз состоит из четырех фаз: профазы, метафазы, анафазы и телофазы. Общая длительность митоза составляет 2-8 часов. Рассмотрим фазы митоза более подробно.

1. Профаза (первая фаза митоза) - самая длительная. Во время профазы в ядре появляются хромосомы (за счет спирализации молекул ДНК). Ядрышко растворяется. Четко проявляются все хромосомы. Центриоли клеточного центра расходятся к разным полюсам клетки и между центриолями формируется «веретено деления». Ядерная оболочка растворяется, и хромосомы попадают в цитоплазму. Профаза завершается.Следовательно, в результате профазы формируется «веретено деления», состоящее из двух центриолей, находящихся в разных полюсах клетки и связанных между собой двумя типами нитей - опорными и тянущими. В цитоплазме имеется диплоидный набор хромосом, каждая из которых содержит двойное (по отношению к норме) количество ядерного вещества и имеет перетяжку вдоль большой оси симметрии.

2. Метафаза (вторая фаза деления). Иногда ее называют «фаза звезды», так как при виде сверху хромосомы образуют некоторое подобие звезды. Во время метафазы хромосомы выражены в наибольшей степени.В метафазе хромосомы перемещаются в центр клетки и прикрепляются центромерами к тянущим нитям веретена, что приводит к возникновению строго упорядоченной структуры расположения хромосом в клетке. После прикрепления к тянущей нити каждая хроматиновая нить разделяется на две части, за счет чего каждая хромосома напоминает как бы слепленные в районе центромеры хромосомы. В конце метафазы центромера разделяется вдоль (параллельно хроматиновым нитям) и образуется тетраплоидное количество хромосом. На этом метафаза завершается.



Итак, в конце метафазы возникает тетраплоидное количество хромосом (4n), одна половина которых прикреплена к нитям, тянущим эти хромосомы к одному полюсу, а вторая половина - к другому полюсу.

3. Анафаза (третья фаза, следует за метафазой). При анафазе (начальный период) тянущие нити веретена сокращаются и за счет этого хромосомы расходятся к разным полюсам делящейся клетки. Каждая из хромосом характеризуется нормальным количеством ядерного вещества.К концу анафазы хромосомы концентрируются у полюсов клетки, а на опорных нитях веретена в центре клетки (на «экваторе») возникают утолщения. На этом анафаза завершается.

4. Телофаза (последняя стадия митоза). Во время телофазы происходят следующие изменения: возникшие в конце анафазы утолщения на опорных нитях увеличиваются и сливаются, образуя первичную мембрану, отделяющую одну дочернюю клетку от другой.В итоге возникают две клетки, содержащие диплоидный набор хромосом (2n). На месте первичной мембраны образуется перетяжка между клетками, которая углубляется, и к концу телофазы одна клетка отделяется от другой.

Одновременно с формированием клеточных оболочек и разделением исходной (материнской) клетки на две дочерние происходит окончательное формирование молодых дочерних клеток. Хромосомы мигрируют в центр новых клеток, тесно сближаются, молекулы ДНК деспирализуются и хромосомы как отдельные образования исчезают. Вокруг ядерного вещества формируется ядерная оболочка, возникает ядрышко, т. е. происходит формирование ядра.

В это же время формируется и новый клеточный центр, т. е. из одной центриоли образуется две (за счет деления), между возникшими центриолями появляются тянущие опорные нити. Телофаза на этом завершается, а вновь возникшие клетки вступают в свой цикл развития, который зависит от местонахождения клеток и их будущей роли.

Путей развития дочерних клеток несколько. Один из них состоит в том, что вновь возникшие клетки специализируются на выполнении конкретных функций, например, становятся форменными элементами крови. Пусть часть из этих клеток становится эритроцитами (красными кровяными тельцами). Такие клетки растут, достигая определенного размера, затем они теряют ядро и заполняются дыхательным пигментом (гемоглобином) и становятся зрелыми, способными к выполнению своих функций. Для эритроцитов - это способность реализации газообмена между тканями и органами дыхания, осуществляя перенос молекулярного кислорода (O 2) из органов дыхания к тканям и углекислый газ из тканей к органам дыхания. Молодые эритроциты попадают в кровяное русло, где функционируют 2-3 месяца, а затем погибают.

Вторым путем развития дочерних клеток тела является вступление их в митотический цикл.

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.

Что такое митоз и мейоз и какие фазы у них есть? клеток, имеющее некоторые различия. При мейозе из материнского ядра образуются четыре дочерние, в которых уменьшено количество хромосом (в два раза). При митозе также происходит но при этом типе формируются только две дочерние клетки с одинаковыми хромосомами, как у родителей.

Так и мейоз? Это биологические процедуры деления, во время которых формируются клетки с определенными хромосомами. Размножение митозом встречается у многоклеточных, сложных живых организмов.

Стадии

Митоз протекает в две стадии:

  1. Удвоение информации на генном уровне. Здесь материнские клетки распределяют между собой генетическую информацию. На данном этапе хромосомы изменяются.
  2. Митотическая стадия. Она состоит из временных периодов.

Клеточное формирование происходит в несколько стадий.

Фазы

Митоз делится на несколько фаз:

  • телофаза;
  • анафаза;
  • метафаза;
  • профаза.

Эти фазы протекают в определенной последовательности и имеют свои особенности.

У любых сложных многоклеточных митоз чаще всего подразумевает деление клеток по недифференцированному типу. При митозе материнская клетка делится на дочерние, обычно их две. Одна из них становится стволовой и продолжает деление, а вторая перестает делиться.

Интерфаза

Интерфаза - это клеточная подготовка к разделению. Обычно эта стадия продолжается до двадцати часов. В это время протекает множество самых разных процессов, во время которых клетки подготавливаются к митозу.

В этот период происходит деление белков, увеличивается количество органелл в структуре ДНК. К концу деления генетические молекулы удваиваются, а число хромосом не меняется. Одинаковые ДНК срощены и являются двумя хроматидами в одной молекуле. Образующиеся хроматиды идентичны и являются сестринскими.

После завершения интерфазы начинается собственно митоз. Он состоит из профазы, метафазы, анафазы и телофазы.

Профаза

Первая фаза митоза - это профаза. Она длится около часа. Ее условно делят на несколько этапов. На начальном этапе в профазе митоза происходит увеличение ядрышка, в результате которого формируются молекулы. К концу фазы каждая хромосома состоит уже из двух хроматид. Ядрышки и ядерные оболочки растворяются, все элементы оказываются в клетке в беспорядке. Далее в профазе митоза происходит образование ахроматинового деления, часть нитей проходит через всю клетку, а некоторые соединены с центральными элементами. При этом процессе содержание генетического кода остается неизменным.

Число хромосом в профазе митоза не изменяется. Что случается еще? В профазе митоза происходит распад ядерной оболочки, в результате которой спиральные хромосомы оказываются в цитоплазме. Частички распавшейся ядерной оболочки формируют мелкие мембранные пузырьки.

В профазе митоза происходит следующее: клетка животного становится круглой, а у растений она не изменяет форму.

Метафаза

После профазы наступает метафаза. В этой фазе спирализация хромосом достигает своего пика. Укороченные хромосомы начинают движение к центру клетки. Во время перемещения они располагаются одинаково в обеих частях. Здесь образуется метафазная пластинка. При рассмотрении клетки отчетливо видны хромосомы. Именно в метафазу их легко подсчитать.

После формирования метафазной пластинки проводится анализ набора хромосом, присущего данному типу клетки. Это происходит путем блокирования расхождения хромосом при помощи алкалоидов.

У каждого организма имеется свой набор хромосом. Например, у кукурузы их 20, а у садовой клубники - 56. В человеческом организме хромосом меньше, чем у ягоды, всего 46.

Анафаза

Все процессы, происходящие в профазе митоза, заканчиваются, и начинается анафаза. Во время этого процесса все хромосомные соединения разрываются и начинают движение в противоположные друг от друга стороны. В анафазе родственные хромосомы становятся самостоятельными. Они попадают в различные клетки.

Фаза заканчивается расхождением к полюсам клетки хроматид. Также здесь происходит распределение наследственной информации между дочерними и материнской клеткой.

Телофаза

Хромосомы располагаются у полюсов. Под микроскопом их становится плохо видно, так как вокруг них формируется оболочка ядра. Веретено деления полностью разрушается.

У растений мембрана формируется в центре клетки, постепенно распространяясь к полюсам. Она делит материнскую клетку на две части. Как только мембрана полностью вырастет, появляется целлюлозная стенка.

Особенности митоза

Деление клеток может затормаживаться из-за высоких температур, воздействия ядов, радиации. Во время изучения митоза клеток у разных многоклеточных организмов можно применять яды, которые тормозят митоз на стадии метафазы. Это позволяет детально изучить хромосомы, провести кариотопирование.

Митоз в таблице

Рассмотрим фазы клеточного деления в таблице, расположенной ниже.

Процесс стадий митоза также можно проследить по таблице.

Митоз у животных и растений

Особенности данного процесса можно описать в сравнительной таблице.

Итак, нами был рассмотрен процесс деления клеток у животных организмов и растений, а также их особенности и различия.

С идентичным генетическим материалом.

Интерфаза

Прежде чем делящаяся клетка попадает в митоз, она подвергается периоду роста, называемому интерфазой. Около 90% времени клетки при нормальном могут быть потрачены на интерфазу, которая осуществляется в три основные фазы:

  • Фаза G1 : период до синтеза ДНК. В этой фазе клетка увеличивается в массе, подготавливаясь к делению.
  • S-фаза: период, в течение которого происходит синтез ДНК. В большинстве клеток эта стадия происходит за очень короткий промежуток времени.
  • Фаза G2: клетка продолжает синтез дополнительных белков увеличиваться в размерах.

В последней части интерфазы, клетка все еще имеет нуклеолы. Ядро ограничено ядерной оболочкой, а дублируются, но находятся в форме хроматина. В две пары центриолей, образованных из репликации одной пары, расположены за пределами ядра.

После фазы G2 наступает митоз, который в свою очередь состоит из нескольких стадий и завершается цитокинезом (делением клетки).

Фазы митоза:

Препрофаза (в клетках растений)

Препрофаза является дополнительной фазой во время митоза в , которая не встречается у других эукариот, таких как животные или грибы. Она предшествует профазе и характеризуется двумя различными событиями.

Изменения, которые происходят в препрофазе:

  • Образование полосы препрофазы - плотного микротрубочного кольца под .
  • Начало зарождения микротрубочек в ядерной оболочке.

Профаза

В профазе конденсируется в дискретные хромосомы. Ядерная оболочка ломается, а веретено деления образуются на противоположных полюсах клетки. Профаза (по сравнению с интерфазой) является первым истинным шагом митотического процесса.

Изменения, которые происходят в профазе:

  • Хроматиновые волокна превращаются в хромосомы, имеющие по две , соединенные в центромер. Волокна деления, состоящие из микротрубочек и белков, образуется в .
  • В клетках животных волокна деления первоначально появляется как структуры, называемые астерами, которые окружают каждую пару центриолей.
  • Две пары центриолей (сформированных из репликации одной пары в интерфазе) отходят друг от друга к противоположным полюсам клетки из-за удлинения микротрубочек, образующихся между ними.

Прометафаза

Прометафаза - фаза митоза после профазы и предшествующая метафазе в эукариотических соматических клетках. Некоторые источники относят процессы протекающие в прометафазе к поздней профазе и начальной стадии метафазы.

Изменения, которые происходят в прометафазе:

  • Ядерная оболочка распадается.
  • Полярные волокна, которые представляют собой микротрубочки, составляющие волокна веретена, перемещаются от каждого полюса до экватора клетки.
  • Кинетохоры, которые являются специализированными областями в центромерах хромосом, прикрепляются к типу микротрубочек, называемых кинетохорными нитями.
  • Нити кинетохора «взаимодействуют» с веретеном деления.
  • Хромосомы начинают мигрировать к центру клетки.

Метафаза

В метафазе полностью развиваются волокна деления, а хромосомы выравниваются на метафазной (экваториальной) пластине (плоскость, которая одинаково удалена от двух полюсов).

Изменения, которые происходят в метафазе:

  • Ядерная мембрана полностью исчезает.
  • В клетках животных две пары расходятся в противоположных направлениях к полюсам клетки.
  • Полярные волокна (микротрубочки, составляющие волокна веретена) продолжают распространяться от полюсов к центру. Хромосомы перемещаются случайным образом, пока не присоединяют (при помощи своих кинетохор) к полярным волокнам с обеих сторон центромеров.
  • Хромосомы выравниваются на метафазной пластине под прямым углом к ​​полюсам веретена.
  • Хромосомы удерживаются на метафазной пластине равными силами полярных волокон, которые нажимают на их центромеры.

Анафаза

В анафазе парные хромосомы () отделяются и начинают двигаться к противоположным концам (полюсам) клетки. Волокна веретена, не связанные с хроматидами, вытягиваются и удлиняют клетку. В конце анафазы каждый полюс содержит полную компиляцию хромосом.

Изменения, которые происходят в анафазе:

  • Парные в каждой отдельной хромосоме начинают раздвигаться.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается «полной» хромосомой. Они называются дочерними хромосомами.
  • При помощи веретена деления, перемещаются к полюсам на противоположные концы клетки.
  • Дочерние хромосомы сначала мигрируют в центромер, а кинетохорные нити становятся короче, чем хромосомы вблизи полюсов.
  • При подготовке к телофазе два полюса клетки также отдаляются друг от друга во время анафазы. В конце анафазы каждый полюс содержит полную компиляцию хромосом.
  • Начинается процесс цитокинеза (разделение цитоплазмы исходной клетки), который завершается после телофазы.

Телофаза

В телофазе хромосомы достигают ядер новых дочерних клеток.

Изменения, которые происходят в телофазе:

  • Полярные волокна продолжают удлиняться.
  • Ядра начинают формироваться на противоположных полюсах.
  • Ядерные оболочки новых ядер образовываются из остатков ядерной оболочки материнской клетки и кусочков эндомембранной системы.
  • Появляются ядрышка.
  • Разматываются хроматиновые волокна хромосом.
  • После этих изменений телофаза и митоз в основном завершены, а генетическое содержание одной клетки поделено на две части.

Цитокинез

Цитокинез - это разделение цитоплазмы клетки. Он начинается до конца митоза в анафазе и заканчивается вскоре после телофазы. В конце цитокинеза образуются две генетически идентичные дочерние клетки.

Дочерние клетки

В конце митоза и цитокинеза хромосомы распределены поровну между двумя дочерними клетками. Эти клетки являются идентичными , причем каждая из которых содержит полный набор хромосом.

Клетки, продуцируемые через митоз, отличаются от клеток, продуцируемых через . В мейозе образуются четыре дочерние клетки. Эти клетки представляют собой , содержащие половину числа хромосом от исходной клетки. подвергаются мейозу. При делении половых клеток во время оплодотворения, гаплоидные клетки становятся диплоидной клеткой.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл - это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Основные стадии митоза.

1.Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90% информации эукариотической клетки.

2.Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1) (2n2c, где n-число хромосом, c- число молекул). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S) (2n4c). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2) (2n4c). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период - препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1-1,5 ч, G2-периода интерфазы - 2-3 ч, S-периода интерфазы - 6-10 ч.

Стадии митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу (рис. 1–3). Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c).

Рис. 1. Схема митоза в клетках корешка лука


Рис. 2. Схема митоза в клетках корешка лука: 1- интерфаза; 2,3 - профаза; 4 - метафаза; 5,6 - анафаза; 7,8 - телофаза; 9 - образование двух клеток


Рис. 3. Митоз в клетках кончика корешка лука: а - интерфаза; б - профаза; в - метафаза; г - анафаза; л , е - ранняя и поздняя телофазы

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Нетипичные формы митоза

К нетипичным формам митоза относятся амитоз, эндомитоз, политения.

1. Амитоз - это прямое деление ядра. При этом сохраняется морфология ядра, видны ядрышко и ядерная мембрана. Хромосомы не видны, и их равномерного распределения не происходит. Ядро делится на две относительно равные части без образования митотического аппарата (системы микротрубочек, центриолей, структурированных хромосом). Если при этом деление заканчивается, возникает двухъядерная клетка. Но иногда перешнуровывается и цитоплазма.

Такой вид деления существует в некоторых дифференцированных тканях (в клетках скелетной мускулатуры, кожи, соединительной ткани), а также в патологически измененных тканях. Амитоз никогда не встречается в клетках, которые нуждаются в сохранении полноценной генетической информации, - оплодотворенных яйцеклетках, клетках нормально развивающегося эмбриона. Этот способ деления не может считаться полноценным способом размножения эукариотических клеток.

2. Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.

3. Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). По-литенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.

Биологическое значение митоза.

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.



Понравилась статья? Поделитесь ей
Наверх