Физические и химические свойства углерода. Реферат: Углерод и его основные неорганические соединения

В этой статье мы рассмотрим элемент, входящий в состав периодической таблицы Д.И. Менделеева, а именно углерод. В современной номенклатуре он обозначается символом С, входит в четырнадцатую группу и является «участником» второго периода, имеет шестой порядковый номер, а его а.е.м. = 12.0107.

Атомные орбитали и их гибридизация

Начнем рассмотрение углерода с его орбиталей и их гибридизации - его главных особенностей, благодаря которым он и по сей день заставляет удивляться ученых всего мира. Каково же их строение?

Гибридизации атома углерода устроена таким образом, что валентные электроны занимают позиции на трех орбиталях, а именно: один находится на орбитали 2s, а два - на 2p-орбиталях. Последние две из трех орбиталей образуют угол, равный 90 градусам по отношению друг к другу, а 2s-орбиталь обладает сферической симметрией. Однако данная форма устройства рассматриваемых орбиталей не позволяет нам понять, почему же углерод, входя в органические соединения, образует углы в 120, 180 и 109.5 градусов. Формула электронного строения атома углерода выражает себя в следующем виде: (He) 2s 2 2p 2 .

Разрешение возникшего противоречия было сделано при помощи введения в оборот понятия гибридизации атомных орбиталей. Чтобы понять трехгранную, вариантную природу С, потребовалось создать три формы представления о его гибридизации. Главный вклад в появление и развитие данной концепции был сделан Лайнусом Полингом.

Свойства физического характера

Строение атома углерода обуславливает наличие ряда некоторых особенностей физического характера. Атомы этого элемента образуют простое вещество - углерод, который имеет модификации. Вариации изменений его строения могут придавать образовавшемуся веществу различные качественные характеристики. Причина наличия большого количества модификаций углерода заключается в его способности устанавливать и образовывать разнотипные связи химической природы.

Строение атома углерода может варьироваться, что позволяет ему иметь определенное количество изотопных форм. Углерод, находимый в природе, образуется при помощи двух изотопов в стабильном состоянии - 12 C и 13 C - и изотопа с радиоактивными свойствами - 14 С. Последний изотоп сосредотачивается в верхних слоях коры Земли и в атмосфере. Вследствие влияния космического излучения, а именно его нейтронов, на ядро атомов азота, образуется радиоактивный изотоп 14 С. После середины пятидесятых годов двадцатого века он стал попадать в окружающую среду в качестве техногенного продукта, образованного при работе АЭС, и вследствие использования водородной бомбы. Именно на процессе распада 14 С основывается методика радиоуглеродного датирования, нашедшая свое широкое применение в археологии и геологии.

Модификация углерода в аллотропной форме

В природе существует множество веществ, в состав которых входит углерод. Человек использует строение атома углерода в собственных целях при создании различных веществ, среди которых:

  1. Кристаллические углероды (алмазы, углеродные нанотрубки, волокна и проволоки, фуллерены и т.д.).
  2. Аморфные углероды (активированный и древесный уголь, различные виды кокса, техуглерод, сажа, нанопена и антрацит).
  3. Кластерные формы углерода (диуглероды, наноконусы и астраленовые соединения).

Структурные особенности атомного строения

Электронное строение атома углерода может обладать различной геометрией, которая зависит от уровня гибридизации орбиталей, которыми он обладает. Существует 3 главных вида геометрии:

  1. Тетраэдрическая - создается вследствие смещения четырех электронов, один из которых s-, а три принадлежат к p-электронам. Атом С занимается центральное положение в тетраэдре, связывается четырьмя равносильным сигма-связями с другими атомами, занимающими вершину данного тетраэдра. При таком геометрическом расположении углерода могут образоваться его аллотропные формы, например алмаз и лонсдейлит.
  2. Тригональная - обязана своим появлением смещению трех орбиталей, из которых одна s- и две p-. Здесь имеются три сигма-связи, которые находятся между собой в равносильной положении; они залегают в общей плоскости и придерживаются угла в 120 градусов по отношению друг к другу. Свободная р-орбиталь располагается перпендикулярно по отношению к плоскости сигма-связей. Подобной геометрией строения обладает графит.
  3. Диагональная - появляется благодаря смешиванию s- и p-электронов (гибридизация sp). Электронные облака вытягиваются вдоль общего направления и принимают форму несимметричной гантели. Свободные электроны создают π-связи. Данное строение геометрии в углероде дает начало появлению карбина, особой формы модификации.

Атомы углерода в природе

Строение и свойства атома углерода издавна рассматриваются человеком и используются с целью получения большого количества разнообразных веществ. Атомы этого элемента, благодаря своей уникальной способности образовывать разные химические связи и наличию гибридизации орбиталей, создают множество различных аллотропных модификаций при участии всего лишь одного элемента, из атомов одного типа, - углерода.

В природе углерод содержится в земной коре; принимает формы алмазов, графитов, различных горючих природных богатств, например, нефти, антрацита, бурого угля, сланцев, торфа и т.д. Входит в состав газов, используемых человеком в энергетической промышленности. Углерод в составе его диоксида заполняет гидросферу и атмосферу Земли, причем в воздухе доходит до 0.046%, а в воде - до шестидесяти раз больше.

В организме человека С содержится в количестве, приблизительно равном 21%, а выводиться преимущественно с мочой и выдыхаемым воздухом. Этот же элемент участвует в биологическом цикле, он поглощается растениями и расходуется в ходе процессов фотосинтеза.

Атомы углерода благодаря своей способности устанавливать разнообразные ковалентные связи и строить из них цепи, и даже циклы, могут создавать огромнейшее количество веществ органической природы. Помимо этого, данный элемент входит в состав солнечной атмосферы, пребывая в соединениях с водородом и азотом.

Свойства химической природы

Теперь рассмотрим строение и свойства атома углерода с химической точки зрения.

Важно знать, что углерод проявляет инертные свойства в условиях обычной температуры, но может показывать нам свойства восстановительного характера под влиянием высоких температур. Основные степени окисления: + - 4, иногда +2, а также +3.

Участвует в реакции с большим количеством элементов. Может вступать в реакции с водой, водородом, галогенами, щелочными металлами, кислотами, фтором, серой и т.д.

Строение атома углерода порождает невероятно огромное количество веществ, отделенных в отдельный класс. Такие соединения называются органическими и основываются на С. Это является возможным благодаря свойству атомов данного элемента образовывать полимерные цепи. Среди самых известных и обширных групп находятся протеины (белки), жиры, углеводы и углеводородные соединения.

Способы эксплуатации

Благодаря уникальному строения атома углерода и сопутствующим этому свойствам, элемент широко применяется человеком, например, при создании карандашей, выплавке металлических тиглей - здесь используют графит. Алмазы используются в качестве абразивных материалов, украшений, насадок для бормашин и т.д.

Фармакология и медицина также занимаются использованием углерода в разнообразных соединениях. Этот элемент входит в состав стали, служит основой для каждого органического вещества, участвует в процессе фотосинтеза и т.д.

Токсичность элемента

Строение атома элемента углерода заключает в себе наличие опасного воздействия на живую материю. Углерод попадает в мир вокруг нас в результате угольного сгорания на ТЭС, входит в состав газов, вырабатываемых автомобилями, в случае получения угольного концентрата и т.д.

Высок процент содержания углерода в аэрозолях, что влечет за собой увеличение процента заболеваемости людей. Чаще всего страдают верхние дыхательные пути и легкие. Некоторые заболевания можно относить к профессиональным, например, пылевой бронхит и болезни группы пневмокониоза.

14 С - токсичен, а силу его влияния определяет радиационное взаимодействие с β-частицами. Этот атом входит в составы биологических молекул, в том числе содержится в дезокси- и рибонуклеиновых кислотах. Допустимым количеством 14 С в воздухе рабочей зоны считается отметка в 1.3Бк/л. Максимальное количество поступающего в организм углерода во время дыхания равно соответствует 3.2*10 8 Бк/год.

Углерод (лат. Carboneum) - химический элемент 14‑й группы 2‑го периода периодической системы Менделеева (IV группа в старой нумерации); атомный номер 6, атомная масса 12,011.

Углерод - химический элемент совершенно особый. Из химии углерода выросло мощное дерево органической химии с её сложнейшими синтезами и необъятным кругом изучаемых соединений. Появляются новые отрасли органической химии. Всё живое, составляющее биосферу, построено из соединений углерода. И деревья, которые давно отшумели, миллионы лет назад, превратились в топливо, содержащее углерод, - каменный уголь, торф и т. д. Возьмем самый обычный карандаш - предмет, всем знакомый. Не правда ли, удивительно, что скромный графитовый стерженек родствен сверкающему алмазу, самому твердому веществу в природе? Алмаз, графит, карбин - аллотропические модификации углерода (см. Аллотропия). Строение графита (1), алмаза (2), карбина (3).

История знакомства человека с этим веществом уходит далеко в глубь веков. Неизвестно имя того, кто открыл углерод, неизвестно, какая из форм чистого углерода - графит или алмаз - была открыта раньше. Лишь в конце XVIII в. было признано, что углерод - самостоятельный химический элемент.

Содержание углерода в земной коре составляет 0,023% по массе. Углерод - основная составная часть растительного и животного мира. Все горючие ископаемые - нефть, газ, торф, сланцы - построены на углеродной основе, особенно богат углеродом каменный уголь. Большая часть углерода сосредоточена в минералах - известняке CaCO 3 и доломите CaMg(CO 3) 2 , представляющих собой соли щелочноземельных металлов и слабой угольной кислоты H 2 CO 3 .

Среди жизненно важных элементов углерод - один из важнейших: жизнь на нашей планете построена на углеродной основе. Почему? Ответ на этот вопрос находим в «Основах химии» Д. И. Менделеева : «Углерод встречается в природе как в свободном, так и соединительном состоянии, в весьма различных формах и видах… Способность атомов углерода соединяться между собой и давать сложные частицы проявляется во всех углеродистых соединениях… Ни в одном из элементов… способности к усложнению не развито в такой степени, как в углероде… Ни одна пара элементов не дает столь много соединений, как углерод с водородом».

Действительно, атомы углерода могут соединяться разнообразными способами между собой и с атомами многих других элементов, образуя огромное разнообразие веществ. Их химические связи могут возникать и разрушаться под действием природных факторов. Так возникает круговорот углерода в природе: из атмосферы - в растения, из растений - в животные организмы, из них - в неживую природу и т. д. Где углерод, там многообразие веществ, где углерод, там самые разнообразные по молекулярной архитектуре конструкции (см. Углеводороды).

С накоплением углерода в земной коре связано накопление и многих других элементов, осаждающихся в виде нерастворимых карбонатов, и т. д. Важную геохимическую роль в земной коре играют CO 2 и угольная кислота. Огромное количество CO 2 выделяется при вулканизме - в истории Земли это был основной источник углерода для биосферы.

Неорганических соединений углерода по количеству намного меньше, чем органических. Углерод в форме алмаза, графита, угля вступает в соединение только при нагревании. При высоких температурах он соединяется с металлами и некоторыми неметаллами , например с бором, образуя карбиды .

Из неорганических соединений углерода наиболее известны соли угольной кислоты, диоксид углерода CO 2 (углекислый газ) и моноксид углерода CO. Значительное менее известен третий оксид C 3 O 2 - бесцветный газ с неприятным резким запахом.

В атмосфере Земли находится 2,3 10 12 т диоксида CO 2 - продукта дыхания и горения . Это основной источник углерода для развития растений. Оксид углерода CO, известный под названием угарного газа, образуется при неполном сгорании топлива: в выхлопных газах автомобилей и т. д.

В промышленности оксид углерода CO используют в качестве восстановителя (например, при выплавке чугуна в доменных печах) и для синтеза органических веществ (например, метилового спирта по реакции: CO + 2H 2 → CH 3 (OH).

Наиболее известные аллотропические модификации элементарного углерода: алмаз - неорганический полимер пространственной, объемной структуры; графит - полимер плоскостной структуры; карбин - линейный полимер углерода, существующий в двух формах, отличающихся характером и чередованием химических связей; двумерная модификация графен ; углеродные нанотрубки цилиндрической структуры. (см. Аллотропия).

Алмаз - кристаллическая форма углерода, редкий минерал, по твердости превосходящий все природные и все, кроме кристаллического нитрида бора, искусственные материалы. Крупные кристаллы алмаза после огранки превращаются в драгоценнейшие из камней - бриллианты.

В конце XVII в. флорентийские ученые Аверани и Тарджони пытались сплавить несколько мелких алмазов в один крупный, нагрели их солнечными лучами с помощью зажигательного стекла. Алмазы исчезли, сгорев на воздухе… Прошло около ста лет, прежде чем французский химик А. Лавуазье в 1772 г. не только повторил этот опыт, но и объяснил причины исчезновения алмаза: кристаллик драгоценного бриллианта сгорал точно так же, как в других опытах сгорали кусочки фосфора и угля. И только в 1797 г. английский ученый С. Теннант доказал идентичность природы алмаза и угля. Он установил, что объемы углекислого газа после сгорания равных по массе уголька и алмаза оказались одинаковыми. После этого множество раз пытались получить алмаз искусственным путем из графита, угля и углеродсодержащих материалов при высоких температурах и давлениях. Иногда после этих опытов находили мелкие алмазоподобные кристаллики, но произвести удачные эксперименты не удавалось ни разу.

Синтез алмаза стал возможен после того, как советский физик О. И. Лейпунский в 1939 г. рассчитал условия, при которых графит может превращаться в алмаз (давление около 60 000 ат, температура 1600-2000 °C). В 50‑х гг. нашего века почти одновременно в нескольких странах, в том числе и в СССР, искусственные алмазы были получены в промышленных условиях. В наши дни с одной отечественной промышленной установки получают ежедневно 2000 каратов искусственных алмазов (1 карат = 0,2 г). Алмазные коронки буровых установок, алмазный режущий инструмент, шлифовальные круги с алмазной крошкой работают надежно и долго. Искусственные алмазы, так же как и природные кристаллы, широко используются в современной технике.

Еще шире применяется на практике другой чисто углеродный полимер - графит . В кристалле графита атомы углерода, лежащие в одной плоскости, прочно связаны в правильные шестиугольники. Шестиугольники с общими гранями образуют плоскости-пачки. Связи между углеродными атомами разных пачек малопрочны. К тому же расстояние между углеродными атомами разных плоскостей почти в 2,5 раза больше, чем между соседними атомами одной плоскости. Поэтому незначительного усилия достаточно, чтобы расщепить графитовый кристалл на отдельные чешуйки. Вот почему графитовый стержень карандаша оставляет след на бумаге. Несравненно труднее разрушить связь между атомами углерода, лежащими в одной плоскости. Прочность этих связей - причина высокой химической стойкости графита. На него не действуют даже горячие щелочи и кислоты, за исключением концентрированной азотной кислоты.

Помимо высокой химической стойкости графиту свойственна и высокая термостойкость: изделия из него можно использовать при температуре до 3700 °C. Способность проводить электрический ток определила многие области применения графита. Он нужен в электротехнике, металлургии , производстве порохов, атомной технике. Графит высочайшей чистоты используется в реакторостроении - как эффективный замедлитель нейтронов .

Линейный полимер углерода - карбин пока применяется в практике ограниченно. В молекуле карбина атомы углерода соединены в цепочки поочередно тройными и одинарными связями:

−C≡C−C≡C−C≡C−C≡C−C≡C−

Это вещество было впервые получено советскими химиками В. В. Коршаком, А. М. Сладковым, В. И. Касаточкиным и Ю. П. Кудрявцевым в начале 60‑х гг. в Институте элементоорганических соединений Академии наук СССР. Карбин обладает полупроводниковыми свойствами, причем под действием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение - в фотоэлементах.

В молекуле другой формы карбина - поликумулена (β-карбина), впервые полученного также в нашей стране, углеродные атомы связаны иначе, чем в карбине, - только двойными связями:

═C═C═C═C═C═C═C═C═C═

Число известных науке органических соединений - соединений углерода - превышает 7 млн. Химия полимеров - природных и синтетических - это тоже прежде всего химия соединений углерода. Органические соединения углерода изучают такие самостоятельные науки, как органическая химия , биохимия , химия природных соединений.

Неоценимо значение соединений углерода в жизни человека - повсюду нас окружает связанный углерод: в атмосфере и литосфере , в растениях и животных, в нашей одежде и пище.

Общие сведения и методы получения

Углерод (С) -неметалл. Название происходит от слова уголь В при­роде находится как в свободном состоянии, так и в виде многочислен­ных соединений. В качестве продуктов разложения древних формаций существуют угли, главной составной частью которых является углерод.

Нефть, озокерит (горный воск) и асфальт также являются углерод­ными соединениями, которые, очевидно, возникли при разложении древ­них организмов,

Углерод является главной составной частью животного и раститель­ного мира.

Несмотря на большое многообразие твердых конденсированных сис­тем углерода (угли, кокс, сажа, графит, алмаз и др), он имеет две кристаллические модификации: гексагональную (равновесную) в виде графита и кубическую (метастабильную) в виде алмаза. Углерод, по­лученный при термическом разложении его соединений, имеет плотную черную окраску. Ранее черный углерод считали особой аморфной мо­дификаций элемента. Согласно последним данным, тонкая структура атой модификации отвечает графиту.

Графит образует довольно обширные месторождения. Хорошо сфор­мированные кристаллы графита встречаются редко. Графит гибок, мягок, обладает слабым металлическим блеском, отличается маркостью. При­родный графит часто загрязнен другими элементами (до 20 °/о), поэтому для нужд современной техники и прежде всего атомной энергетики ис­пользуют искусственный графит высокой чистоты. Для производства искуственного графита используют в основном нефтяной кокс как на­полнитель и каменноугольный пек как связующее. В качестве добавок к наполнителю применяют природный графит и сажу. Иногда в качест­ве связующего используют некоторые синтетические смолы, например фурановые или фенольные. Производство искусственного графита сос­тоит из ряда механических операций (дробления, размола, рассева кокса по фракциям, смешения кокса со связующими, формовки заготовок) и термических отжигов при разной температуре и длительности. Графити-зация - окончательная термическая обработка, превращающая углерод­ный материал в графит, проводится при 3000-3100°С.

Углерод в форме алмаза представляет собой очень твердые, абсо­лютно прозрачные (в чистом виде) кристаллы, сильно преломляющие свет. Естественные грани алмаза часто являются гранями правильных октаэдров; однако встречаются и другие формы кубической системы среди ннх тетраэдр, что указывает на то, что алмаз принадлежит к тет-раэдрической гемнэдрии кубической системы.

В природе алмазы встречаются главным образом в россыпях, т. е. в наносных породах. В ряде мест алмазы обнаружены в оливинах вулка­нического происхождения, в так называемых кимберлитовых трубках.

В послевоенный период налажено промышленное получение искусст­венных алмазов как необходимого сырья для изготовления различных паст и режущего инструмента.

Физические свойства

Атомные характеристики. Атомный номер углерода 6, атомная масса 12,01115 а.е.м, атомный объем 3,42*10- 6 м 3 /моль. Атомный радиус ко-валентный равен 0,077 нм; ионный радиус С 4 + 0,02 нм. Конфигурация внешних электронных оболочек атома углерода 2л,2 2р 2 . Углерод состоит из двух стабильных изотопов |2 С и |3 С, содержание которых соответст­венно равно 98,892 и 1,108 %. Известны радиоактивные изотопы с мас­совыми числами 10, 11, 14, 15, период полураспада которых соответст­венно составляет 19,1 с, 1224 с, 5567 лет, 2,4 с.

Аллотропические модификации - графит и алмаз. Графит имеет гексагональную кубическую решетку, периоды который при комнатной температуре: а=0,2456 нм, с=0,6696 нм. Алмаз имеет кубическую ре­шетку с периодом а = 0,356679 нм. Потенциалы ионизации атома угле­рода / (эВ): 11,264; 24,376; 47,86. Электроотрицательность 2,5. Работа выхода электронов <р=4,7 эВ. Эффективное поперечное сечение захвата тепловых нейтронов 0,0034*10 -28 м 2 .

Плотность. При комнатной температуре рентгеновская плотность гра­фита 2,666 Мг/м 3 , пикнометрическая плотность 2,253 Мг/м 3 ; при тех же условиях рентгеновская плотность алмаза 3,515 Мг/м 3 , а пикнометриче­ская 3,514 Мг/м 3 .

Механические свойства

Алмаз по твердости превосходит все другие вещества, поэтому его можно шлифовать и вообще обрабатывать только алмазным порошком. Несмотря на высокую твердость, алмаз очень хрупок.

Микротвердость алмаза по Кнуппу при 20 °С 88200 МПа. Мнкротвер-дость, определенная при помощи обычной пирамиды, 78500 МПа. Вре­менное сопротивление при растяжении при комнатной температуре а в - = 1760-4-1780 МПа; модуль нормальной упругости при растяжении Е= = 1141,1 ГПа, в направлении £=1202 ГПа, а в направлении £=1052 ГПа (данные относятся к комнатной температуре).

Графит в отличие от алмаза обладает незначительной твердостью. По шкале Мооса твердость алмаза равна 10, а твердость графита 1, Временное сопротивление при растяжении пористого графита о„=0,34+ -*-0,69 МПа, а электродного графита о п =3,43-И7,2 МПа (вдоль элект­рода). В поперечном направлении а„=6,18н-8,93 МПа. На нитях из графита можно получить o B =26- i -28 МПа; на «усах» из графита до­стигнута прочность 480-500 МПа (данные относятся к комнатной температуре). Графит сравнительно хорошо сопротивляется сжимаю­щим нагрузкам. Так, о™ реакторного графита при 20 "С составляет 20,6-34,3 МПа. В уплотненном графите эта характеристика может быть доведена до 70 МПа. Сжимаемость графита и=3,24*10 -11 Па- 1 , сжима­емость алмаза х = 0,23-Ю - " Па -1 .

Химические свойства

В соединениях проявляет степени окисления -4, +2 и +4.

Углерод, независимо от модификации, обладает малой химической активностью. Он не растворяется в обычных растворителях, но хорошо растворяется в расплавленных металлах, особенно в металлах IVA - V1IIA подгрупп Периодической системы. При охлаждении расплавов углерод выпадает или в виде свободного графита, или в виде соедине­ний металла с углеродом. Алмаз отличается очень высокой химической стойкостью. На него не действуют ни кислоты, ни основания. При на­греве в кислороде выше 800 °С алмаз сгорает до С0 2 . Если алмаз на­гревать без доступа воздуха, то ои превращается в графит.

Графит легче поддается химическому воздействию, чем алмаз; при нагреве в чистом кислороде он воспламеняется уже при 637-642 С. Графит, смоченный концентрированной азотной кислотой, при нагреве до красного каления вспучивается. При обработке концентрированной серной кислотой в присутствии окислителей графит разбухает и стано­вится темно-синим. Некоторые сорта черного углерода воспламеняются в атмосфере кислорода уже при незначительном нагреве. Со фтором черный углерод уже взаимодействует при обычной температуре. При нагреве углерод соединяется со многими элементами: водородом, серой, кремнием, бором и др. В природе наблюдается большое разнообразие соединений углерода с водородом.

При взаимодействии с кислородом углерод образует два простых ок­сида. Продуктом полного сгорания углерода является диоксид С0 2 , при неполном сгорании образуется оксид СО. Теплота образования С0 2 при окислении графита Д# 0 бр=395,2 кДж/моль, а СО Д// 0 бр= 111,5 кДж/ /моль, т. е. значительно ниже. СОг - бесцветный, негорючий газ со сла­бым сладковатым запахом. Он тяжелее воздуха в 1,529 раза, легко сжижается при 20 °С и давлении 5,54 МПа, образуя бесцветную жид­кость. Критическая температура С0 2 31,4 °С, критическое давление 7,151 МПа. При нормальном давлении С0 2 сублимируется при

78,32 °С. СО образуется в процессе сжигания угля при недостаточном притоке воздуха, представляет собой ядовитый газ, не имеющий ни за­паха, ни цвета; он не поддерживает горения, но сам является горючим; в 0,967 раза легче воздуха. При атмосферном давлении СО сжижается при - 191,34°С и затвердевает прн -203,84 °С.

Углерод взаимодействует с серой. При пропускании ее паров над раскаленным древесным углем образуется двусернистый углерод CS 2 (сероуглерод). Низшие сульфиды углерода неустойчивы. Сероуглерод представляет бесцветную жидкость удушливого запаха. Температура кипения CS 2 46,2 "С, затвердевания -110,6°С. Давление пара CS 2 при 293 К равно 0,0385 МПа. Сероуглерод - эндотермическое соедине­ние, при его распаде освобождается около 64,5 кДж/моль. CS 2 взрыво­опасно, однако взрывная реакция широко не распространяется. Из дру­гих соединений углерода с серой следует отметить COS, представляю­щее собой бесцветный газ, не имеющий запаха; COS легко воспламе­няется. Образуется COS при совместном пропускании смеси паров серы и оксида углерода через раскаленную трубку. COS сжижается при ^49,9 "С, а затвердевает при -137,8 °С.

Углерод вступает в реакции с азотом. При прокаливании без досту­па воздуха различных органических продуктов (кожи, шерсти и др) образуются соединения, содержащие одновалентный радикал CN. Про­стейшую кислоту HCN, являющуюся производной циана, называют си­нильной, а ее солн цианидами. Синильная кислота - бесцветная жид­кость, кипящая при 26,66 °С; в большом разведении имеет запах, сход­ный с запахом горького миндаля. Затвердевает HCN при -14,85 °С, чрезвычайно ядовита. Цианиды калия и натрия широко применяются при производстве золота, а также в гальванотехнике благородных ме­таллов.

Имеются соединения углерода с галогенами. Фторид углерода CF 4 - бесцветный газ с температурой кипения -128 "С, температурой плавле­ния -183,44 °С. Получают CF 4 или при непосредственном взаимодейст­вии фтора и углерода или при воздействии AgF на СС1 4 при 300 °С. Четыреххлористый углерод ССЦ- бесцветная, негорючая жидкость со слабым характерным запахом. ССЦ кипит при 76,86 °С и затвердевает при -22,77 "С. При обычной температуре ССЦ химически инертен, не реагирует нн с основаниями, ни с кислотами. ССЦ очень хорошо рас­творяет органические вещества; его часто используют в качестве рас­творителя жиров, масел, смол и др.

Соединения углерода с металлами, а также с бором и кремнием на­зывают карбидами. Карбиды подразделяют на два основных класса: разлагаемые водой и не подвергающиеся действию воды. Карбиды, разлагаемые водой, можно рассматривать как соли ацетилена; в соот­ветствии с этим состав отвечает общим формулам Ме^Сг, Ме"С 2 и Me 2 (С 2)з. Водой или разбавленными кислотами ацетилиды расщепля­ются с образованием ацетилена.

К группе карбидов, устойчивых к действию воды или разбавленных кислот, относятся соединения углерода с переходными металлами, а также SiC . Кристаллическая структура карбидов, за исключением SiC , кубическая, типа NaCl . Такие кабриды иногда называют металлоподоб-ными соединениями, так как они обладают высокой электро- и тепло­проводностью, имеют металлический блеск. Соединение кремния с угле­родом SiC - карборунд. Он обладает очень высокой твердостью, а по своей кристаллической структуре подобен алмазу. Теплота образования SiC Д# 0 бр= 117,43 кДж/моль. К числу карбидов, стойких к воздействию воды и неразбавленных кислот, относятся также В 4 С, Сг 4 С, Сг 3 С 2 и некоторые другие.

Области применения

Наиболее широкое применение углерод получил в металлургической промышленности, прежде всего в доменном производстве, где исполь­зуется его способность восстанавливать железо из руд. Углерод в до­менном производстве применяют в виде кокса, который получают путем нагрева каменного угля без доступа воздуха. Металлургический кокс содержит до 90 % С, 1 % Н, 3 % О, 0,5-1 % N и 5 % золы, т.е. не­сгораемых составных частей. Кокс горит синеватым пламенем без ко­поти, а его теплотворная способность составляет 30-32 МДж/кг. В ка­честве огнеупорного материала для плавильных тиглей, стойкого к быст­рой смене температур, применяют графит. Его также используют для изготовления карандашей, смазки, огнеупорной краски и др.

Графит, обладающий высокой электрической проводимостью, нахо­дит разнообразное применение в электротехнике и гальванопластике (электроды, микрофонные угли, некоторые сорта графита для ламп на­каливания и др.). Он является также одним из конструкционных мате­риалов для ядерных реакторов. Производство графита в нашей стране регламентируется ГОСТ 17022-81, который распространяется на основ­ные виды естественного графита. Согласно этому ГОСТу производится три марки графита смазочного ГС-1 до 3, две марки графита тигельно­го ГТ, две марки графита литейного ГЛ, три марки графита аккумуля­торного ГАК, четыре марки графита электроугольного ГЭУ, три марки графита элементарного ГЭ (служит для производства гальванических элементов), две марки графита карандашного ГК, две марки графита алмазного ГАЛ (для производства алмазов и других изделий, где тре­буются высокие инертность, чистота, электрическая проводимость). Со­держание золы в низших сортах смазочного, электродного и литейного графита 13-18 °/о, а в отдельных случаях до 25 % по массе (например,

В атомной энергетике применяют искусственный графит, способ по-л\ 1сния которого был разработан еще в конце прошлого века.

Углерод (С) – типичный неметалл; в периодической системе находится в 2-м периоде IV группе, главной подгруппе. Порядковый номер 6, Ar = 12,011 а.е.м., заряд ядра +6.

Физические свойства: углерод образует множество аллотропных модификаций: алмаз – одно из самых твердых веществ, графит, уголь, сажа .

Атом углерода имеет 6 электронов: 1s 2 2s 2 2p 2 . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2р х, а другой, либо 2р у , либо 2р z -орбитали.

Различие энергии s- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 2s-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1s 2 2s 1 2p x 1 2p y 1 2p z 1 . Именно такое состояние атома углерода характерно для решетки алмаза — тетраэдрическое пространственное расположение гибридных орбиталей, одинаковая длина и энергия связей.

Это явление, как известно, называют sp 3 -гибридизацией, а возникающие функции – sp 3 -гибридными. Образование четырех sp 3 -cвязeй обеспечивает атому углерода более устойчивое состояние, чем три р-р- и одна s-s-связи. Помимо sp 3 -гибридизации у атома углерода наблюдается также sp 2 — и sp-гибридизация. В первом случае возникает взаимное наложение s- и двух р-орбиталей. Образуются три равнозначные sp 2 — гибридных орбитали, расположенные в одной плоскости под углом 120° друг к другу. Третья орбиталь р неизменна и направлена перпендикулярно плоскости sp 2 .

При sp-гибридизации происходит наложение орбиталей s и р. Между двумя образующимися равноценными гибридными орбиталями возникает угол 180°, при этом две р-орбитали у каждого из атомов остаются неизменными.

Аллотрорпия углерода. Алмаз и графит

В кристалле графита атомы углерода расположены в параллельных плоскостях, занимая в них вершины правильных шестиугольников. Каждый из атомов углерода связан с тремя соседними sp 2 -гибридными связями. Между параллельными плоскостями связь осуществляется за счет ван-дер-ваальсовых сил. Свободные р-орбитали каждого из атомов направлены перпендикулярно плоскостям ковалентных связей. Их перекрыванием объясняется дополнительная π-связь между атомами углерода. Таким образом, от валентного состояния, в котором находятся атомы углерода в веществе, зависят свойства этого вещества .

Химические свойства углерода

Наиболее характерные степени окисления: +4, +2.

При низких температурах углерод инертен, но при нагревании его активность возрастает.

Углерод как восстановитель:

— с кислородом
C 0 + O 2 – t° = CO 2 углекислый газ
при недостатке кислорода — неполное сгорание:
2C 0 + O 2 – t° = 2C +2 O угарный газ

— со фтором
С + 2F 2 = CF 4

— с водяным паром
C 0 + H 2 O – 1200° = С +2 O + H 2 водяной газ

— с оксидами металлов. Таким образом выплавляют металл из руды.
C 0 + 2CuO – t° = 2Cu + C +4 O 2

— с кислотами – окислителями:
C 0 + 2H 2 SO 4 (конц.) = С +4 O 2 ­ + 2SO 2 ­ + 2H 2 O
С 0 + 4HNO 3 (конц.) = С +4 O 2 ­ + 4NO 2 ­ + 2H 2 O

— с серой образует сероуглерод:
С + 2S 2 = СS 2 .

Углерод как окислитель:

— с некоторыми металлами образует карбиды

4Al + 3C 0 = Al 4 C 3

Ca + 2C 0 = CaC 2 -4

— с водородом — метан (а также огромное количество органических соединений)

C 0 + 2H 2 = CH 4

— с кремнием, образует карборунд (при 2000 °C в электропечи):

Нахождение углерода в природе

Ссвободный углерод встречается в виде алмаза и графита. В виде соединений углерод находится в составе минералов: мела, мрамора, известняка – СаСО 3 , доломита – MgCO 3 *CaCO 3 ; гидрокарбонатов – Mg(НCO 3) 2 и Са(НCO 3) 2 , СО 2 входит в состав воздуха; углерод является главной составной частью природных органических соединений – газа, нефти, каменного угля, торфа, входит в состав органических веществ, белков, жиров, углеводов, аминокислот, входящих в состав живых организмов.

Неорганические соединения углерода

Ни ионы С 4+ , ни С 4- ‑ ни при каких обычных химических процессах не образуются: в соединениях углерода имеются ковалентные связи различной полярности.

Оксид углерода (II) СО

Угарный газ; бесцветный, без запаха, малорастворим в воде, растворим в органических растворителях, ядовит, t°кип = -192°C; t пл. = -205°C.

Получение
1) В промышленности (в газогенераторах):
C + O 2 = CO 2

2) В лаборатории — термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):
HCOOH = H 2 O + CO­

H 2 C 2 O 4 = CO­ + CO 2 ­ + H 2 O

Химические свойства

При обычных условиях CO инертен; при нагревании – восстановитель; несолеобразующий оксид.

1) с кислородом

2C +2 O + O 2 = 2C +4 O 2

2) с оксидами металлов

C +2 O + CuO = Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 – hn = COCl 2 (фосген)

4) реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (формиат натрия)

5) с переходными металлами образует карбонилы

Ni + 4CO – t° = Ni(CO) 4

Fe + 5CO – t° = Fe(CO) 5

Оксид углерода (IV) СO 2

Углекислый газ, бесцветный, без запаха, растворимость в воде — в 1V H 2 O растворяется 0,9V CO 2 (при нормальных условиях); тяжелее воздуха; t°пл.= -78,5°C (твёрдый CO 2 называется «сухой лёд»); не поддерживает горение.

Получение

  1. Термическим разложением солей угольной кислоты (карбонатов). Обжиг известняка:

CaCO 3 – t° = CaO + CO 2

  1. Действием сильных кислот на карбонаты и гидрокарбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 ­

NaHCO 3 + HCl = NaCl + H 2 O + CO 2 ­

Химические свойства СO 2
Кислотный оксид: реагирует с основными оксидами и основаниями, образуя соли угольной кислоты

Na 2 O + CO 2 = Na 2 CO 3

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

NaOH + CO 2 = NaHCO 3

При повышенной температуре может проявлять окислительные свойства

С +4 O 2 + 2Mg – t° = 2Mg +2 O + C 0

Качественная реакция

Помутнение известковой воды:

Ca(OH) 2 + CO 2 = CaCO 3 ¯(белый осадок) + H 2 O

Оно исчезает при длительном пропускании CO 2 через известковую воду, т.к. нерастворимый карбонат кальция переходит в растворимый гидрокарбонат:

CaCO 3 + H 2 O + CO 2 = Сa(HCO 3) 2

Угольная кислота и её соли

H 2 CO 3 — Кислота слабая, существует только в водном растворе:

CO 2 + H 2 O ↔ H 2 CO 3

Двухосновная:
H 2 CO 3 ↔ H + + HCO 3 — Кислые соли — бикарбонаты, гидрокарбонаты
HCO 3 — ↔ H + + CO 3 2- Cредние соли — карбонаты

Характерны все свойства кислот.

Карбонаты и гидрокарбонаты могут превращаться друг в друга:

2NaHCO 3 – t° = Na 2 CO 3 + H 2 O + CO 2 ­

Na 2 CO 3 + H 2 O + CO 2 = 2NaHCO 3

Карбонаты металлов (кроме щелочных металлов) при нагревании декарбоксилируются с образованием оксида:

CuCO 3 – t° = CuO + CO 2 ­

Качественная реакция — «вскипание» при действии сильной кислоты:

Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 ­

CO 3 2- + 2H + = H 2 O + CO 2 ­

Карбиды

Карбид кальция:

CaO + 3 C = CaC 2 + CO

CaC 2 + 2 H 2 O = Ca(OH) 2 + C 2 H 2 .

Ацетилен выделяется при реакции с водой карбидов цинка, кадмия, лантана и церия:

2 LaC 2 + 6 H 2 O = 2La(OH) 3 + 2 C 2 H 2 + H 2 .

Be 2 C и Al 4 C 3 разлагаются водой с образованием метана:

Al 4 C 3 + 12 H 2 O = 4 Al(OH) 3 = 3 CH 4 .

В технике применяют карбиды титана TiC, вольфрама W 2 C (твердые сплавы), кремния SiC (карборунд – в качестве абразива и материала для нагревателей).

Цианиды

получают при нагревании соды в атмосфере аммиака и угарного газа:

Na 2 CO 3 + 2 NH 3 + 3 CO = 2 NaCN + 2 H 2 O + H 2 + 2 CO 2

Синильная кислота HCN – важный продукт химической промышленности, широко применяется в органическом синтезе. Ее мировое производство достигает 200 тыс. т в год. Электронное строение цианид-аниона аналогично оксиду углерода (II), такие частицы называют изоэлектронными:

C= O: [:C= N:] –

Цианиды (0,1-0,2%-ный водный раствор) применяют при добыче золота:

2 Au + 4 KCN + H 2 O + 0,5 O 2 = 2 K + 2 KOH.

При кипячении растворов цианидов с серой или сплавлении твердых веществ образуются роданиды :
KCN + S = KSCN.

При нагревании цианидов малоактивных металлов получается дициан: Hg(CN) 2 = Hg + (CN) 2 . Растворы цианидов окисляются до цианатов :

2 KCN + O 2 = 2 KOCN.

Циановая кислота существует в двух формах:

H-N=C=O; H-O-C= N:

В 1828 г. Фридрих Вёлер (1800-1882) получил из цианата аммония мочевину: NH 4 OCN = CO(NH 2) 2 при упаривании водного раствора.

Это событие обычно рассматривается как победа синтетической химии над «виталистической теорией».

Существует изомер циановой кислоты – гремучая кислота

H-O-N=C.
Ее соли (гремучая ртуть Hg(ONC) 2) используются в ударных воспламенителях.

Синтез мочевины (карбамида):

CO 2 + 2 NH 3 = CO(NH 2) 2 + H 2 O. При 130 0 С и 100 атм.

Мочевина является амидом угольной кислоты, существует и ее «азотный аналог» – гуанидин.

Карбонаты

Важнейшие неорганические соединения углерода – соли угольной кислоты (карбонаты). H 2 CO 3 – слабая кислота (К 1 =1,3·10 -4 ; К 2 =5·10 -11). Карбонатный буфер поддерживает углекислотное равновесие в атмосфере. Мировой океан обладает огромной буферной емкостью, потому что он является открытой системой. Основная буферная реакция – равновесие при диссоциации угольной кислоты:

H 2 CO 3 ↔ H + + HCO 3 — .

При понижении кислотности происходит дополнительное поглощение углекислого газа из атмосферы с образованием кислоты:
CO 2 + H 2 O ↔ H 2 CO 3 .

При повышении кислотности происходит растворение карбонатных пород (раковины, меловые и известняковые отложения в океане); этим компенсируется убыль гидрокарбонатных ионов:

H + + CO 3 2- ↔ HCO 3 —

CaCO 3 (тв.) ↔ Ca 2+ + CO 3 2-

Твердые карбонаты переходят в растворимые гидрокарбонаты. Именно этот процесс химического растворения избыточного углекислого газа противодействует «парниковому эффекту» – глобальному потеплению из-за поглощения углекислым газом теплового излучения Земли. Примерно треть мирового производства соды (карбонат натрия Na 2 CO 3) используется в производстве стекла.


Представление о том, что химические связи могут быть результатом владения парой электронов двумя атомами, было выдвинуто Льюисом (1916) и развито Гейтлером и Лондоном (1927). В дальнейшем Лайнус Полинг ввел чрезвычайно важные понятия направленной валентности и гибридизации орбитали.

Согласно понятию направленной валентности , связь атомов осуществляется в том направлении, при котором обеспечивается максимальное перекрывание орбиталей. Чем лучше перекрывание, тем прочнее должна быть связь, и только при максимальном перекрывании достигается минимум энергии системы.

Атом углерода в основном состоянии имеет электронное строение 1s22s22p2. Посмотрим внимательно на распределение электронов по орбиталям в атоме углерода:

Два неспаренных электрона могут образовывать только две химические связи с другими атомами, то есть в соответствии с этой схемой атом углерода должен быть двух валентным. Но в органической химии атом углерода всегда имеет валентность, равную четырем .

Для образования четырех ковалентных связей атом углерода должен иметь четыре неспаренных электрона.

Как же объяснить четырехвалентность углерода?

Атом может изменять свое валентное состояние, когда, спареные электроны распариваются и переходят на другие атомные орбитали. В нашем случае один электрон с s-орбитали переходит на свободную р-орбиталь.

Рассмотрим образование связей в молекуле простейшего водородного соединения углерода – в молекуле метана (СН4). Каждый атом водорода имеет по одному неспаренному электрону на s-орбитали первого электронного слоя (1s1). У атома углерода, находящегося в возбужденном состоянии, есть четыре неспаренных электрона: один на s - и три на р-орбиталях второго слоя. Можно было бы ожидать, что вследствие различных форм s - и р-орбиталей связи между атомом углерода и атомами водорода будут неравноценными. Исследования же показывают, что связи в молекуле метана равноценны.

Строение некоторых молекул с точки зрения перекрывания атомных орбиталей «чистого типа», то есть s, p, d объяснить не возможно. Поэтому американский ученый Лайнус Полинг разработал теорию гибридизации атомных орбиталей. Он предположил, что орбитали внешнего электронного слоя атомов могут как бы смешиваться – гибридизоваться.

При этом получаются гибридные атомные орбитали , электроны

на которых обладают усредненной энергией.

Итак, в гибридизации участвует 1-s электрон и 3 р-электрона, поэтому такой тип гибридизации называется sp 3 -гибридизация . Такое состояние орбиталей атома углерода называют первым валентным состояние. Так как в гибридизации участвует четыре электрона, то и образется четыре одинаковых гибридных орбитали. При образовании гибридных орбиталей они расходятся на возможно большее расстояние друг от друга. Угол между ними оказывается равным 109028/, то есть все гибридные орбитали атома углерода в состоянии sp3-гибридизации направлены к вершинам тетраэдра – правильной треугольной пирамиды.

Химическая связь – это перекрывание атомных орбиталей . Так как углерод четырехвалентный, то и химических связей будет четыре. У атома водорода один неспаренный электрон находится на s-орбитали и имеет форму шара. Поэтому, молекула метана СН4 имеет следующее пространственное строение.

Молекула этана СН3 – СН3, соответственно будет иметь следующее пространственное строение:

https://pandia.ru/text/80/289/images/image016_17.jpg" align="left" width="147 height=110" height="110">В гибридизации могут принимать участие не все р-орбитали атома углерода. Так, из одной s - и двух р-орбиталей образуется три sp2-гибридные орбитали, угол между которыми равен 1200(плоский равносторонний треугольник). Оставшаяся без изменения одна р-орбиталь распологается перпендикулярно плоскости, в которой лежат гибридные орбитали. Именно негибридные р-электроны будут участвовать в отразовании π-связи, которая образуется при боковом перекрывании р-облаков и располагается над и под плоскостью связывающие ядра.

С sp2-гибридизацией мы встречаемся в соединениях с двойной связью, атомы образующие двойную связь и будет находиться в sp2-гибридизации.

Рассмотрим пространственное строение молекулы этена СН2 = СН2, в которой атомы углерода находятся в состоянии sp2-гибридизации. Волнистой линией на рисунке показано перекрывание негибридных р-орбиталей (π-связь).

Третье валентное состояние атома углерода, sp – гибридизация .

При смешивании одной s - и одной р-орбиталей атома углерода осуществляется sp-гибридизация. При sp-гибридизации атомных орбиталей две р-орбитали остаются негибридными. sp-Гибридные орбитали ориентированы под углом 1800 друг к другу (линейная конфигурация).

Две не участвующие в гибридизации р-орбитали располагаются взаимно перпендикулярно и участвуют в образовании двух π-связей. С sp-гибридизацией мы встречаемся в соединениях с тройной связью, атомы углерода образующие тройную связь и будет находиться в sp-гибридизации.

Итак , атомы углерода участвующие в образовании простых, одинарных σ-связей находятся в состоянии sp3-гибридизации, атомы углерода участвующие в образовании двойных связей находятся в состоянии sp2-гибридизации, атомы углерода участвующие в образовании тройных связей находятся в состоянии sp-гибридизации. Любая кратная связь всегда будет иметь одну σ-связь, все остальные будут π-связями. Например, в молекуле СН2 = СН2, между атомами углерода, одна связь σ-, другая π-связь. В молекуле СН≡СН между атомами углерода, одна связь σ-, и две π-связи.

Проверьте себя, как Вы поняли тему, для этого выполните тестовое задание:

1. Сколько π-связей содержит молекула бутена -1 (СН3 – СН2 – СН = СН2):

а) 2, б) 4, в) 1, в) 12.

2.Сколько атомов углерода в молекуле пентина-2 (СН3 – С ≡ С – СН2 – СН3) находится в состоянии sp3 гибридизации:

а) все 5 атомов углерода, б) 2, в) 1, г) 3.

3.Какова ожидаемая равновесная конфигурация молекулы СН2 = СН2:

а) линейная, б) угловая, в) плоский равносторонний треугольник, г) тетраэдр.

4. Выберите соединения, для которых характерна ковалентная полярная связь:

а) Cl2; б) С - Н;

5.Определите тип гибридизации атомных орбиталей по следующим данным:

Правильные ответы теста:

1. (в); 2. (г); 3. (в); 4. (в); 5. sp2.



Понравилась статья? Поделитесь ей
Наверх