Физика вся школьная программа. Физика. Полный курс. Орир Дж

Физика - одна из основных наук естествознания. Изучение физики в школе начинается с 7 класса и продолжается до конца обучения в школе. К этому времени у школьников уже должен быть сформирован должный математический аппарат, необходимый для изучения курса физики.

  • Школьная программа по физике состоит из нескольких больших разделов: механика, электродинамика, колебания и волны оптика, квантовая физика, молекулярная физика и тепловые явления.

Темы школьной физики

В 7 классе идет поверхностное ознакомление и введение в курс физики. Рассматриваются основные физические понятия, изучается строение веществ, а также сила давления, с которой различные вещества действуют на другие. Кроме того изучаются законы Паскаля и Архимеда.

В 8 классе изучаются различные физические явления. Даются начальные сведения, о магнитном поле и явления, при которых оно возникает. Изучается постоянный электрический ток и основные законы оптики. Отдельно разбираются различные агрегатные состояния вещества и процессы, происходящие при переходе вещества из одного состояния в другое.

9 класс посвящен основным законам движения тел и взаимодействия их между собой. Рассматриваются основные понятия механических колебаний и волн. Отдельно разбирается тема звука и звуковых волны. Изучается основы теории электромагнитного поля и электромагнитные волны. Кроме того происходит знакомство с элементами ядерной физики и изучается строение атома и атомного ядра.

В 10 классе начинается углубленное изучение механики (кинематики и динамики) и законов сохранения. Рассматриваются основные виды механических сил. Происходит углубленное изучение тепловых явлений, изучается молекулярно-кинетическая теория и основные законы термодинамики. Повторяются и систематизируются основы электродинамики: электростатика, законы постоянного электрического тока и электрический ток в различных средах.

11 класс посвящен изучению магнитного поля и явления электромагнитной индукции. Подробно изучаются различные виды колебаний и волн: механические и электромагнитные. Происходит углубление знаний из раздела оптики. Рассматриваются элементы теории относительности и квантовая физика.

  • Ниже идет список классов с 7 по 11. Каждый класс содержит темы по физике, которые написаны нашими репетиторами. Данные материалы могут использоваться как учениками и их родителями, так и школьными учителями и репетиторами.

В зависимости от вашей цели, свободного времени и уровня математической подготовки, возможны несколько вариантов.

Вариант 1

Цель - «для себя», сроки - не ограничены, математика - тоже почти с нуля.

Выберите линию учебников поинтереснее, например, и изучайте его, конспектируя в тетради. Затем пройдите таким же образом учебники Г. Я. Мякишева и Б. Б. Буховцева за 10-11 класс. Закрепите полученные знания - прочтите .

Если пособия Г. С. Ландсберга вам не подошли, а они именно для тех, кто изучает физику с нуля, возьмите линию учебников для 7-9 классов А. В. Перышкина и Е. М. Гутника. Не нужно стесняться, что это для маленьких детей - порой и студенты-пятикурсники без подготовки «плавают» в Перышкине за 7 класс уже с десятой страницы.

Как заниматься

Непременно отвечайте на вопросы и прорешивайте задания после параграфов.

В конце тетради сделайте для себя справочник по основным понятиям и формулам.

Обязательно находите на Ютубе ролики с физическими опытами, которые встречаются в учебнике. Просматривайте и конспектируйте их по схеме: что видел - что наблюдал - почему? Рекомендую ресурс - там систематизированы все опыты и теория к ним.

Сразу заведите отдельную тетрадь для решения задач. Начните с и прорешайте половину заданий из него. Затем прорешайте на 70% или, как вариант - « для 10-11 классов Г. Н. и А. П. Степановых.

Пытайтесь решать самостоятельно, подсматривайте в решебник в самом крайнем случае. Если столкнулись с затруднением - ищите аналог задачи с разбором. Для этого нужно иметь под рукой 3-4 бумажные книги, где подробно разбирают решения физических задач. Например, Н. Е. Савченко или книги И. Л. Касаткиной.

Если вам всё будет понятно, и душа будет просить сложных вещей - берите для профильных классов и прорешивайте все упражнения.

Приглашаем всех желающих изучать физику

Вариант 2

Цель - экзамен ЕГЭ или другой, срок - два года, математика - с нуля.

Справочник для школьников О. Ф. Кабардина и «Сборник задач по физике» для 10-11 классов О. И. Громцева О. И. («заточен» под ЕГЭ). Если экзамен не ЕГЭ, лучше взять задачники В. И. Лукашика и А. П. Рымкевича или «Сборник вопросов и задач по физике» для 10-11 классов Г. Н. Степановой, А. П. Степанова. Не гнушайтесь обращаться к учебникам А. В. Перышкина и Е. М. Гутника за 7-9 классы, а лучше их тоже законспектируйте.

Упорные и трудолюбивые могут пройтись полностью по книге В. А. Орлова, Г. Г. Никифорова, А. А. Фадеевой и др. В этом пособии есть всё необходимое: теория, практика, задачи.

Как заниматься

Система та же, что и в первом варианте:

  • заведите тетради для конспектов и решения задач,
  • самостоятельно конспектируйте и решайте задачи в тетради,
  • просматривайте и анализируйте опыты, например, на .
  • Если вы хотите наиболее эффективно подготовиться к ЕГЭ или ОГЭ за оставшееся время,

Вариант 3

Цель - ЕГЭ, сроки - 1 год, математика на хорошем уровне.

Если математика в норме, можно не обращаться к учебникам 7-9 классов, а сразу брать 10-11 классы и справочник для школьников О. Ф. Кабардина. В пособии Кабардина содержатся темы, которых нет в учебниках 10-11 классов. При этом рекомендую просматривать видео с опытами по физике и анализировать их по схеме.

Вариант 4

Цель - ЕГЭ, сроки - 1 год, математика - на нуле.

Подготовиться к ЕГЭ за год без базы в математике нереально. Разве что вы будете проделывать все пункты из варианта №2 каждый день по 2 часа.

Преподаватели и репетиторы онлайн-школы «Фоксфорд» помогут достичь максимального результата за оставшееся время.

В книге в краткой и доступной форме изложен материал по всем разделам программы курса "Физика" - от механики до физики атомного ядра и элементарных частиц. Для студентов ВУЗов. Полезно для повторения пройденного материала и при подготовке к экзаменам в ВУЗах, техникумах, колледжах, школах, на подготовительных отделениях и курсах.

Элементы кинематики.
Модели в механике
Материальная точка
Тело, обладающее массой, размерами которого в данной задаче можно пренебречь. Материальная точка - абстракция, но ее введение облегчает решение практических задач (например, движущиеся вокруг Солнца планеты при расчетах можно принять за материальные точки).

Система материальных точек
Произвольное макроскопическое тело или систему тел можно мысленно разбить на малые взаимодействующие между собой части, каждая из которых рассматривается как материальная точка. Тогда изучение движения произвольной системы тел сводится к изучению системы материальных точек. В механике сначала изучают движение одной материальной точки, а затем переходят к изучению движения системы материальных точек.

Абсолютно твердое тело
Тело, которое ни при каких условиях не может деформироваться и при всех условиях расстояние между двумя точками (точнее между двумя частицами) этого тела остается постоянным.

Абсолютно упругое тело
Тело, деформация которого подчиняется закону Гука, а после прекращения действия внешних сил принимает свои первоначальные размеры и форму.

ОГЛАВЛЕНИЕ
Предисловие 3
Введение 4
Предмет физики 4
Связь физики с другими науками 5
1. ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ 6
Механика и ее структура 6
Глава 1. Элементы кинематики 7
Модели в механике. Кинематические уравнения движения материальной точки. Траектория, длина пути, вектор перемещения. Скорость. Ускорение и его составляющие. Угловая скорость. Угловое ускорение.
Глава 2 Динамика материальной точки и поступательное движение твердого тела 14
Первый закон Ньютона. Масса. Сила. Второй и третий законы Ньютона. Закон сохранения импульса. Закон движения центра масс. Силы трения.
Глава 3. Работа и энергия 19
Работа, энергия, мощность. Кинетическая и потенциальная энергия. Связь между консервативной силой и потенциальной энергией. Полная энергия. Закон сохранения энергии. Графическое представление энергии. Абсолютно упругий удар. Абсолютно неупругий удар
Глава 4. Механика твердого тела 26
Момент инерции. Теорема Штейнера. Момент силы. Кинетическая энергия вращения. Уравнение динамики вращательного движения твердого тела. Момент импульса и закон его сохранения. Деформации твердого тела. Закон Гука. Связь между деформацией и напряжением.
Глава 5. Тяготение. Элементы теории поля 32
Закон всемирного тяготения. Характеристики поля тяготения. Работа в поле тяготения. Связь между потенциалом поля тяготения и его напряженностью. Космические скорости. Силы инерции.
Глава 6. Элементы механики жидкостей 36
Давление в жидкости и газе. Уравнение неразрывности. Уравнение Бернулли. Некоторые применения уравнения Бернулли. Вязкость (внутреннее трение). Режимы течения жидкостей.
Глава 7. Элементы специальной теории относительности 41
Механический принцип относительности. Преобразования Галилея. Постулаты СТО. Преобразования Лоренца. Следствия из преобразований Лоренца (1). Следствия из преобразований Лоренца (2). Интервал между событиями. Основной закон релятивистской динамики. Энергия в релятивистской динамике.
2. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ 48
Глава 8. Молекулярно-кинетическая теория идеальных газов 48
Разделы физики: молекулярная физика и термодинамика. Метод исследования термодинамики. Температурные шкалы. Идеальный газ. Законы Бойля-Мариотга, Авогадро, Дальтона. Закон Гей-Люссака. Уравнение Клапейрона-Менделеева. Основное уравнение молекулярно-кинетической теории. Закон Максвелла о распределении молекул идеального газа по скоростям. Барометрическая формула. Распределение Больцмана. Средняя длина свободного пробега молекул. Некоторые опыты, подтверждающие МКТ. Явления переноса (1). Явления переноса (2).
Глава 9. Основы термодинамики 60
Внутренняя энергия. Число степеней свободы. Закон о равномерном распределении энергии по степеням свободы молекул. Первое начало термодинамики. Работа газа при изменении его объема. Теплоемкость (1). Теплоемкость (2). Применение первого начала термодинамики к изопроцессам (1). Применение первого начала термодинамики к изопроцессам (2). Адиабатный процесс. Круговой процесс (цикл). Обратимые и необратимые процессы. Энтропия (1). Энтропия (2). Второе начало термодинамики. Тепловой двигатель. Теорема Кар-но. Холодильная машина. Цикл Карно.
Глава 10. Реальные газы, жидкости и твердые тела 76
Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса (уравнение состояния реальных газов). Изотермы Ван-дер-Ваальса и их анализ (1). Изотермы Ван-дер-Ваальса и их анализ (2). Внутренняя энергия реального газа. Жидкости и их описание. Поверхностное натяжение жидкостей. Смачивание. Капиллярные явления. Твердые тела: кристаллические и аморфные. Моно- и поликристаллы. Кристаллографический признак кристаллов. Типы кристаллов согласно физическому признаку. Дефекты в кристаллах. Испарение, сублимация, плавление и кристаллизация. Фазовые переходы. Диаграмма состояния. Тройная точка. Анализ экспериментальной диаграммы состояния.
3. ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ 94
Глава 11. Электростатика 94
Электрический заряд и его свойства. Закон сохранения заряда. Закон Кулона. Напряженность электростатического поля. Линии напряженности электростатического поля. Поток вектора напряженности. Принцип суперпозиции. Поле диполя. Теорема Гаусса для электростатического поля в вакууме. Применение теоремы Гаусса к расчету полей в вакууме (1). Применение теоремы Гаусса к расчету полей в вакууме (2). Циркуляция вектора напряженности электростатического поля. Потенциал электростатического поля. Разность потенциалов. Принцип суперпозиции. Связь между напряженностью и потенциалом. Эквипотенциальные поверхности. Вычисление разности потенциалов по напряженности поля. Типы диэлектриков. Поляризация диэлектриков. Поляризованность. Напряженность поля в диэлектрике. Электрическое смещение. Теорема Гаусса для поля в диэлектрике. Условия на границе раздела двух диэлектрических сред. Проводники в электростатическом поле. Электроемкость. Плоский конденсатор. Соединение конденсаторов в батареи. Энергия системы зарядов и уединенного проводника. Энергия заряженного конденсатора. Энергия электростатического поля.
Глава 12. Постоянный электрический ток 116
Электрический ток, сила и плотность тока. Сторонние силы. Электродвижущая сила (ЭДС). Напряжение. Сопротивление проводников. Закон Ома для однородного участка в замкнутой цепи. Работа и мощность тока. Закон Ома для неоднородного участка цепи (обобщенный закон Ома (ОЗО)). Правила Кирхгофа для разветвленных цепей.
Глава 13. Электрические токи в металлах, вакууме и газах 124
Природа носителей тока в металлах. Классическая теория электропроводности металлов (1). Классическая теория электропроводности металлов (2). Работа выхода электронов из металлов. Эмиссионные явления. Ионизация газов. Несамостоятельный газовый разряд. Самостоятельный газовый разряд.
Глава 14. Магнитное поле 130
Описание магнитного поля. Основные характеристики магнитного поля. Линии магнитной индукции. Принцип суперпозиции. Закон Био-Савара-Лапласа и его применение. Закон Ампера. Взаимодействие параллельных токов. Магнитная постоянная. Единицы В и Н. Магнитное поле движущегося заряда. Действие магнитного поля на движущийся заряд. Движение заряженных частиц в
магнитном поле. Теорема о циркуляции вектора В. Магнитное поля соленоида и тороида. Поток вектора магнитной индукции. Теорема Гаусса для поля В. Работа по перемещению проводника и контура с током в магнитном поле.
Глава 15. Электромагнитная индукция 142
Опыты Фарадея и следствия из них. Закон Фарадея (закон электромагнитной индукции). Правило Ленца. ЭДС индукции в неподвижных проводниках. Вращение рамки в магнитном поле. Вихревые токи. Индуктивность контура. Самоиндукция. Токи при размыкании и замыкании цепи. Взаимная индукция. Трансформаторы. Энергия магнитного поля.
Глава 16. Магнитные свойства вещества 150
Магнитный момент электронов. Диа- и парамагнетики. Намагниченность. Магнитное поле в веществе. Закон полного тока для магнитного поля в веществе (теорема о циркуляции вектора В). Теорема о циркуляции вектора Н. Условия на границе раздела двух магнетиков. Ферромагнетики и их свойства.
Глава 17. Основы теории Максвелла для электромагнитного поля 156
Вихревое электрическое поле. Ток смещения (1). Ток смещения (2). Уравнения Максвелла для электромагнитного поля.
4. КОЛЕБАНИЯ И ВОЛНЫ 160
Глава 18. Механические и электромагнитные колебания 160
Колебания: свободные и гармонические. Период и частота колебаний. Метод вращающегося вектора амплитуды. Механические гармонические колебания. Гармонический осциллятор. Маятники: пружинный и математический. Физический маятник. Свободные колебания в идеализированном колебательном контуре. Уравнение электромагнитных колебаний для идеализированного контура. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения. Сложение взаимно перпендикулярных колебаний. Свободные затухающие колебания и их анализ. Свободные затухающие колебания пружинного маятника. Декремент затухания. Свободные затухающие колебания в электрическом колебательном контуре. Добротность колебательной системы. Вынужденные механические колебания. Вынужденные электромагнитные колебания. Переменный ток. Ток через резистор. Переменный ток, текущий через катушку индуктивностью L. Переменный ток, текущий через конденсатор емкостью С. Цепь переменного тока, содержащая последовательно включенные резистор, катушку индуктивности и конденсатор. Резонанс напряжений (последовательный резонанс). Резонанс токов (параллельный резонанс). Мощность, выделяемая в цепи переменного тока.
Глава 19. Упругие волны 181
Волновой процесс. Продольные и поперечные волны. Гармоническая волна и ее описание. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение. Принцип суперпозиции. Групповая скорость. Интерференция волн. Стоячие волны. Звуковые волны. Эффект Доплера в акустике. Получение электромагнитных волн. Шкала электромагнитных волн. Дифференциальное уравнение
электромагнитных волн. Следствия теории Максвелла. Вектор плотности потока электромагнитной энергии (вектор Умова-Пойнгинга). Импульс электромагнитного поля.
5. ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ 194
Глава 20. Элементы геометрической оптики 194
Основные законы оптики. Полное отражение. Линзы, тонкие линзы, их характеристики. Формула тонкой линзы. Оптическая сила линзы. Построение изображений в линзах. Аберрации (погрешности) оптических систем. Энергетические величины в фотометрии. Световые величины в фотометрии.
Глава 21. Интерференция света 202
Вывод законов отражения и преломления света на основе волновой теории. Когерентность и монохроматичность световых волн. Интерференция света. Некоторые методы наблюдения интерференции света. Расчет интерференционной картины от двух источников. Полосы равного наклона (интерференция от плоскопараллельной пластинки). Полосы равной толщины (интерференция от пластинки переменной толщины). Кольца Ньютона. Некоторые применения интерференции (1). Некоторые применения интерференции (2).
Глава 22. Дифракция света 212
Принцип Гюйгенса-Френеля. Метод зон Френеля (1). Метод зон Френеля (2). Дифракция Френеля на круглом отверстии и диске. Дифракция Фраунгофера на щели (1). Дифракция Фраунгофера на щели (2). Дифракция Фраунгофера на дифракционной решетке. Дифракция на пространственной решетке. Критерий Рэлея. Разрешающая способность спектрального прибора.
Глава 23. Взаимодействие электромагнитных волн с веществом 221
Дисперсия света. Различия в дифракционном и призматическом спектрах. Нормальная и аномальная дисперсия. Элементарная электронная теория дисперсии. Поглощение (абсорбция) света. Эффект Доплера.
Глава 24. Поляризация света 226
Естественный и поляризованный свет. Закон Малюса. Прохождение света через два поляризатора. Поляризация света при отражении и преломлении на границе двух диэлектриков. Двойное лучепреломление. Положительные и отрицательные кристаллы. Поляризационные призмы и поляроиды. Пластинка в четверть волны. Анализ поляризованного света. Искусственная оптическая анизотропия. Вращение плоскости поляризации.
Глава 25. Квантовая природа излучения 236
Тепловое излучение и его характеристики. Законы Кирхгофа, Стефана-Больцмана, Вина. Формулы Рэлея-Джинса и Планка. Получение из формулы Планка частных законов теплового излучения. Температуры: радиационная, цветовая, яркостная. Вольтамперная характеристика фотоэффекта. Законы фотоэффекта. Уравнение Эйнштейна. Импульс фотона. Давление света. Эффект Комптона. Единство корпускулярных и волновых свойств электромагнитного излучения.
6. ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ 246
Глава 26. Теория атома водорода по Бору 246
Модели атома Томсона и Резерфорда. Линейный спектр атома водорода. Постулаты Бора. Опыты Франка и Герца. Спектр атома водорода по Бору.
Глава 27. Элементы квантовой механики 251
Корпускулярно-волновой дуализм свойств вещества. Некоторые свойства волн де Бройля. Соотношение неопределенностей. Вероятностный подход к описанию микрочастиц. Описание микрочастиц с помощью волновой функции. Принцип суперпозиции. Общее уравнение Шредингера. Уравнение Шрединге-ра для стационарных состояний. Движение свободной частицы. Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Потенциальный барьер прямоугольной формы. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект. Линейный гармонический осциллятор в квантовой механике.
Глава 28. Элементы современной физики атомов и молекул 263
Водородоподобный атом в квантовой механике. Квантовые числа. Спектр атома водорода. ls-состояние электрона в атоме водорода. Спин электрона. Спиновое квантовое число. Принцип неразличимости тождественных частиц. Фермионы и бозоны. Принцип Паули. Распределение электронов в атоме по состояниям. Сплошной (тормозной) рентгеновский спектр. Характеристический рентгеновский спектр. Закон Мозли. Молекулы: химические связи, понятие об энергетических уровнях. Молекулярные спектры. Поглощение. Спонтанное и вынужденное излучение. Активные среды. Типы лазеров. Принцип работы твердотельного лазера. Газовый лазер. Свойства лазерного излучения.
Глава 29. Элементы физики твердого тела 278
Зонная теория твердых тел. Металлы, диэлектрики и полупроводники по зонной теории. Собственная проводимость полупроводников. Электронная примесная проводимость (проводимость я-типа). Донорная примесная проводимость (проводимость р-типа). Фотопроводимость полупроводников. Люминесценция твердых тел. Контакт электронного и дырочного полупроводников (р-п-переход). Проводимость р-и-перехода. Полупроводниковые диоды. Полупроводниковые триоды (транзисторы).
7. ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ 289
Глава 30. Элементы физики атомного ядра 289
Атомные ядра и их описание. Дефект массы. Энергия связи ядра. Спин ядра и его магнитный момент. Ядерные сипы. Модели ядра. Радиоактивное излучение и его виды. Закон радиоактивного распада. Правила смещения. Радиоактивные семейства. а-Распад. р-Распад. у-Излучение и его свойства. Приборы для регистрации радиоактивных излучений и частиц. Сцинтилляционный счетчик. Импульсная ионизационная камера. Газоразрядный счетчик. Полупроводниковый счетчик. Камера Вильсона. Диффузионная и пузырьковая камеры. Ядерные фотоэмульсии. Ядерные реакции и их классификация. Позитрон. Р+-Распад. Электронно-позитронные пары, их аннигиляция. Электронный захват. Ядерные реакции под действием нейтронов. Реакция деления ядра. Цепная реакция деления. Ядерные реакторы. Реакция синтеза атомных ядер.
Глава 31. Элементы физики элементарных частиц 311
Космическое излучение. Мюоны и их свойства. Мезоны и их свойства. Типы взаимодействий элементарных частиц. Описание трех групп элементарных частиц. Частицы и античастицы. Нейтрино и антинейтрино, их типы. Гипероны. Странность и четность элементарных частиц. Характеристики лептонов и адронов. Классификация элементарных частиц. Кварки.
Периодическая система элементов Д.И. Менделеева 322
Основные законы и формулы 324
Предметный указатель 336.

Инструкция

Представьте себе огромный торт с большим количеством крема, бисквита и шоколада. Так вот, выучить физику быстро – то же, что быстро съесть этот торт: вроде все вкусно, прекрасно, но если пытаться заглотить целиком и сразу – не усвоится. Хуже того – выйдет наружу. Поэтому постарайтесь свое время так, чтобы постепенно съедать по маленькому кусочку и не допускать опасного пресыщения.

Поскольку физика опирается на , вы должны в совершенстве владеть математическим аппаратом. Если в процессе изучения физики обнаружились какие-то математические пробелы – постарайтесь их восполнить, иначе понять физический материал будет трудно.

Физическая система понятий не такая строгая, как в , поэтому изучать теорию и практику можно одновременно. В отличие от сухой математики, естественные науки требуют творческого подхода, активной работы воображения и учета «психологии» самой науки. Любое явление физики – не какая-то абстрактная вещь, а вполне реальное событие.

Распишите на отдельных листочках значение вводимых терминов, их физический смысл. Четко разграничивайте одни понятия от других, но при этом стройте между ними взаимосвязи. К примеру, мощность – это работа, совершаемая за единицу времени. Вспомните формулу для работы и подставьте ее в формулу для мощности.

Проведите все рекомендуемые курсом лабораторные работы, оформите их в соответствии с требованиями. Как правило, в технических вузах ставят по только в том случае, если у вас сданы все «лабы». По каждой теме решайте принципиальные задачи, в том числе и качественные.

В изучении предмета вам поможет составление шпаргалок. Это позволит вам быстро охватить все ключевые моменты, систематизировать и обобщить свои знания. На самом экзамене пользоваться шпаргалками не рекомендуется: это собьет с толку вас и при неудачном раскладе настроит против вас преподавателя.

Физика изучает наиболее общие закономерности существования материального мира. Все, что происходит в природе, является следствием действия тех или иных сил. Изучая эти силы, можно просто попытаться вызубрить их список. Но более правилен другой подход – через понимание того, что и почему происходит в окружающем мире.

Инструкция

Существует два варианта обучения. В первом случае человек механически заучивает различные истины, его главная задача состоит в том, чтобы суметь ответить на вопросы преподавателя, сдать экзамены. Такой вариант не дает главного – понимания, поэтому полученные знания оказываются очень непрочными и быстро забываются. Но есть и правильный путь, на котором знания приобретаются не через зазубривание, а через понимание изучаемого материала.

Для быстрого и прочного запоминания существующих сил необходимо находить конкретные их действия. Например, подброшенные предметы падают вниз – это воздействия силы гравитации. Кроме того, все предметы обладают весом, что тоже является ничем иным, как следствием гравитационного воздействия. Если человек, например, 70 кг, то это значит, что он воздействует на опору (пол, землю, платформу ) именно с такой силой, возникающей в гравитационном поле Земли.

Логично предположить, что на другой планете сила тяжести будет другой, поэтому вес тоже будет отличаться. Чему же он будет равен? Вес тела равен его массе, помноженной на ускорение свободного падения. Ускорение свободного падения измеряется на секунду и будет отличаться у разных планет. Например, у Земли оно равно 9,8 метра на секунду в , а у Луны – уже только 1,6. Ускорение свободного падения характеризует силу, с которой планета притягивает тела. Обратите внимание, что масса характеризует не вес тела, а его меру инертности. В условиях невесомости тела ничего не весят, так как нет гравитации. Но чтобы сдвинуть их с места, необходимо приложить определенную силу. Чем массивнее тело, тем больше должна быть эта сила.

Представив, как будет изменяться вес человека на разных планетах, вы сможете легко и быстро выучить понятие гравитации, разобраться с весом, массой, ускорением и другими понятиями данной темы. Появится стройное логичное понимание происходящих процессов, при этом изучаемый материал не придется заучивать насильно, он будет запоминаться по мере его изучения. И все потому, что вы разберетесь в сути явления, поймете, что, как и почему происходит.

Используя этот принцип, вы сможете быстро изучить и другие существующие в природе силы. Например, для изучения электромагнитного взаимодействия вам необходимо понять, как протекает электрический ток по проводнику, какие поля при этом образуются, как они взаимодействуют и т.д. Разобравшись в этом, вы будете понимать, как работает электрический двигатель, почему горит лампочка и т.д. и т.п.

Изучая силы, обязательно разбирайтесь в том, как они связаны между собой, на что влияют, какие процессы происходят в мире под их воздействием. Зная это, вы легко сможете рассказать преподавателю о той или иной силе, приведя конкретные примеры. Даже если вы забудете при ответе какую-то формулу, это вряд ли снизит вашу оценку. Для преподавателя важно понимание вами изучаемого материала, а формулу для конкретных расчетов всегда можно посмотреть в справочнике.

Видео по теме

Источники:

  • Фейнмановские лекции по физике в 2019

Одна из сложнейших наук - физика - является крайне важной в жизни человека. Сложно назвать хотя бы одну сторону жизни людей, куда бы ни проникла физика. А потому столь важно освоить и выучить эту трудную, но прекрасную дисциплину.

Вам понадобится

  • Терпение, усидчивость

Инструкция

Бывает и наоборот - толкают математиков на создание гипотез и нового логического аппарата. Связь физики и математики - одной из важнейших научных дисциплин подкрепляет авторитет физики.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.



Понравилась статья? Поделитесь ей
Наверх