История открытия антибиотиков. История развития антибиотиков Кто впервые предложил название антибиотики

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Народной медицине давно были известны некоторые способы применения в качестве лечебных средств микроорганизмов или продуктов их обмена, однако причина их лечебного действия в то время оставалась неизвестной. Например, для лечения некоторых язв, кишечных расстройств и других заболеваний в народной медицине применялся заплесневевший хлеб.

В 1871 —1872 гг. появились работы русских исследователей В. А. Манассеина и А. Г. Полотебнова, в которых сообщалось о практическом использовании зеленой плесени для заживления кожных язв у человека. Первые сведения об антагонизме бактерий были обнародованы основоположником микробиологии Луи Пастером в 1877 г. Он обратил внимание на подавление развития возбудителя сибирской язвы некоторыми сапрофитными бактериями и высказал мысль о возможности практического использования этого явления.

С именем русского ученого И. И. Мечникова (1894) связано научно обоснованное практическое использование антагонизма между энтеробактериями, вызывающими кишечные расстройства, и молочнокислыми микроорганизмами, в частности болгарской палочкой («мечниковская простокваша»), для лечения кишечных заболеваний человека.

В 1896 году Р. Гозио из культурной жидкости Penicillium brevicompactum выделил кристаллическое соединение - микофеноловую кислоту, подавляющее рост бактерий сибирской язвы.

Эммирих и Лоу в 1899 году сообщили об антибиотическом веществе, образуемом Pseudomonas pyocyanea, они назвали его пиоцианазой; препарат использовался в качестве лечебного фактора как местный антисептик.

Русский врач Э. Гартье (1905) применил кисломолочные продукты, приготовленные на заквасках, содержащих ацидофильную палочку, для лечения кишечных расстройств.

Пауль Эрлих (1854-1915) в результате многочисленных опытов синтезировал в 1912 году мышьяковистый препарат - сальварсан, убивающий in vitro возбудителя сифилиса. В 30-х годах прошлого столетия в результате химического синтеза были получены новые органические соединения - сульфамиды, среди которых красный стрептоцид (пронтозил) был первым эффективным препаратом, оказавшим терапевтическое действие при тяжёлых стрептококковых инфекциях.

В 1910-1913 годах O. Black и U. Alsberg выделили из гриба рода Penicillium пеницилловую кислоту, обладающую антимикробными свойствами.

В 1929 году А. Флемингом был открыт новый препарат пенициллин, который только в 1940 году удалось выделить в кристаллическом виде.

В 1937 году в нашей стране был синтезирован сульфидин - соединение, близкое к пронтозилу. Открытие сульфамидных препаратов и применение их в медицинской практике составило известную эпоху в химиотерапии многих инфекционных заболеваний, в том числе сепсиса, менингита, пневмонии, рожистого воспаления, гонореи и некоторых других.

В 1939 г. Н. А. Красильников и А. И. Кореняко из культуры фиолетового актиномицета Actinomyces violaceus, выделенного ими из почвы, получили первый антибиотик актиномицетного происхождения — мицетин — и изучили условия биосинтеза и применения мицетина в клинике.

А. Флеминг, изучая стрептококков, выращивал их на питательной среде в чашках Петри. На одной из чашек вместе со стафилококками выросла колония плесневого гриба, вокруг которой стафилококки не развивались. Заинтересовавшись этим явлением, Флеминг выделил культуру гриба, определенную затем как Penicilliurn notatum. Выделить вещество, подавляющее рост стафилококков, удалось только в 1940 г. оксфордской группе исследователей. Полученный антибиотик был назван пенициллином.

С открытия пенициллина началась новая эра в лечении инфекционных болезней — эра применения антибиотиков. В короткий срок возникла и развилась новая отрасль промышленности, производящая антибиотики в крупных масштабах. Теперь вопросы микробного антагонизма приобрели важное практическое значение и работы по выявлению новых микроорганизмов — продуцентов антибиотиков стали носить целенаправленный характер.

В СССР получением пенициллина успешно занималась группа исследователей под руководством 3. В. Ермольевой. В 1942г. был выработан отечественный препарат пенициллина. Ваксманом и Вудрафом из культуры Actinomyces antibioticus был выделен антибиотик актиномицин, который впоследствии стал использоваться как противораковое средство. Первым антибиотиком актиномицетного происхождения, нашедшим широкое применение особенно при лечении туберкулеза, был стрептомицин, открытый в 1944 г. Ваксманом с сотрудниками. К противотуберкулезным антибиотикам относятся также открытые позже виомицин (флоримицин), циклосерин, канамицин, рифамицин.

В последующие годы интенсивные поиски новых соединений привели к открытию ряда других терапевтически ценных антибиотиков, нашедших широкое применение в медицине. К ним относятся препараты с широким спектром антимикробного действия. Они подавляют рост не только грамположительных бактерий, которые более чувствительны к действию антибиотиков (возбудители пневмонии, различных нагноений, сибирской язвы, столбняка, дифтерии, туберкулеза), но и грамотрицательных микроорганизмов, которые более устойчивы к действию антибиотиков (возбудители брюшного тифа, дизентерии, холеры, бруцеллеза, туляремии), а также риккетсий (возбудители сыпного тифа) и крупных вирусов (возбудители пситтакоза, лимфогрануломатоза, трахомы и др.). К таким антибиотикам относятся хлорамфеникол (левомицетин), хлортетрациклин (биомицин), окситетрациклин (террамицин), тетрациклин, неомицин (колимицин, мицерин), канамицин, паромомицин (мономицин) и др. Кроме того, в распоряжении врачей в настоящее время имеется группа антибиотиков резерва, активных в отношении устойчивых к пенициллину грамположительных болезнетворных микроорганизмов, а также противогрибные антибиотики (нистатин, гризеофульвин, амфотерицин В, леворин).

Термин «антибиотики», или «антибиотические вещества», предложенный в 1942 г. Ваксманом, первоначально обозначал химические соединения, образуемые микроорганизмами, которые обладают способностью подавлять рост и даже разрушать бактерии и другие микроорганизмы. Это определение, как оказалось впоследствии, не совсем точно, так как в число антибиотиков нужно было бы включить вещества микробного происхождения, которые оказывают не специфическое, а общее антисептическое или консервирующее действие на живые клетки. К таким веществам относятся, в частности, спирты, органические кислоты, перекиси, смолы и др. К тому же антибактериальное действие эти соединения оказывают только в относительно высоких концентрациях. К антибиотикам следует относить только такие вещества, которые в незначительных количествах проявляют специфическое (избирательное) действие на отдельные звенья обмена веществ микробной клетки. Позже в тканях высших растений и животных были найдены соединения, способные в малых количествах специфически подавлять рост микробов. Более того, было показано, что некоторые сходные антибиотики (например, цитринин) могут синтезироваться как микробами, так и высшими растениями. Таким образом, круг организмов-продуцентов антибиотических веществ расширился, что также должно было найти отражение в термине «антибиотики». Установление структуры молекул многих антибиотиков позволило осуществить химический синтез ряда этих соединений без участия организмов-продуцентов.

Дальнейший этап развития химии антибиотиков — изменение (трансформация) молекул этих соединений для получения производных, обладающих рядом преимуществ по сравнению с исходными препаратами. Такое направление исследований объясняется в основном двумя причинами: необходимостью снижения токсичности антибиотиков при сохранении их антибактериального действия; борьбой с инфекционными заболеваниями, вызываемыми устойчивыми к широко применявшимся антибиотикам формами патогенных микроорганизмов. Преимущества производных антибиотиков по сравнению с исходными проявляются также и в изменении растворимости, удлинении срока циркуляции в организме больного и т. д.

Получить производные антибиотиков можно с помощью как химического, так и биологического синтеза. Известен и комбинированный способ получения препаратов. В этом случае ядро молекулы антибиотика формируется при биосинтезе с помощью соответствующих микроорганизмов-продуцентов, а «достройка» молекулы осуществляется методом химического синтеза. Полученные этим способом антибиотики называются полусинтетическими. Так были получены и нашли широкое применение в клинике весьма эффективные полусинтетические пенициллины (метициллин, оксациллин, ампициллин, карбенициллин) и цефалоспорины (цефалотин, цефалоридин) с новыми по сравнению с природными антибиотиками ценными терапевтическими свойствами.

Все эти данные, накопленные в процессе становления и развития науки об антибиотиках, потребовали уточнения термина «антибиотики». В настоящее время антибиотиками следует называть химические соединения, образуемые различными микроорганизмами в процессе их жизнедеятельности, а также производные этих соединений, обладающие способностью в незначительных концентрациях избирательно подавлять рост микроорганизмов или вызывать их гибель. Вполне вероятно, что и эта формулировка с дальнейшим прогрессом антибиотической науки будет уточняться.

В первые годы после открытия антибиотиков их получали с использованием метода поверхностной ферментации. Этот метод заключался в том, что продуцент выращивали на поверхности питательной среды в плоских бутылях (матрацах). Чтобы получить сколько-нибудь заметные количества антибиотика, требовались тысячи матрацев, каждый из которых после слива культуралыюй жидкости необходимо было мыть, стерилизовать, заполнять свежей средой, засевать продуцентом и инкубировать в термостатах. Малопроизводительный способ поверхностной ферментации (поверхностного биосинтеза) не мог удовлетворить потребностей в антибиотиках. В связи с этим был разработан новый высокопроизводительный метод глубинного культивирования (глубинной ферментации) микроорганизмов — продуцентов антибиотиков. Это позволило в короткий срок создать и развить новую отрасль промышленности, выпускающую антибиотики в больших количествах.

Метод глубинного культивирования отличается от предыдущего тем, что микроорганизмы-продуценты выращивают не на поверхности питательной среды, а во всей ее толще. Выращивание продуцентов ведут в специальных чанах (ферментаторах), емкость которых может превышать 50 м3. Ферментаторы снабжены приспособлениями для продувания воздуха через питательную среду и мешалками. Развитие микроорганизмов-продуцентов в ферментаторах происходит при непрерывном перемешивании питательной среды и подаче кислорода (воздуха). При глубинном выращивании во много раз по сравнению с выращиванием продуцента на поверхности среды увеличивается накопление биомассы (из расчета на единицу объема питательной среды), а значит, и возрастает содержание антибиотика в каждом миллилитре культуральной жидкости, т. е. повышается ее антибиотическая активность.

Производственная схема биосинтеза любых антибиотиков включает следующие основные стадии: ферментацию, выделение антибиотика и его химическую очистку, сушку антибиотика и приготовление лекарственной формы. Для осуществления ферментации — биохимического процесса переработки сырья — необходимо иметь питательную среду (сырье) и микроорганизмы, перерабатывающие это сырье. Питательные среды подбирают с таким расчетом, чтобы они обеспечивали хороший рост и развитие продуцента и способствовали максимально возможному биосинтезу антибиотика.

Поднятию производительности антибиотической промышленности, помимо внедрения в практику глубинной ферментации, в огромной степени способствовало использование для биосинтеза новых высокопроизводительных штаммов-продуцентов. Для их получения были разработаны специальные методы селекции. Вследствие большой вариабельности микроорганизмов-продуцентов и быстрой утраты ими исходных свойств (особенно уровня антибиотической активности) необходимо было разработать методы хранения микроорганизмов-продуцентов и поддержания активности, а также способы приготовления посевного материала для засева огромных объемов питательной среды в ферментерах.

В 70-х годах ежегодно описывалось более 300 новых антибиотиков

В настоящее время число известных антибиотиков приближается к 3000, однако в клинической практике используется всего около 50.

Сложно представить сейчас, что такие заболевания как пневмония, туберкулёз и ЗППП всего 80 лет назад означали смертный приговор для пациента. Действенных лекарственных средств против инфекций не было, и люди умирали тысячами и сотнями тысяч. Ситуация становилась катастрофичной в периоды эпидемий, когда в результате вспышки тифа или холеры гибло население целого города.

Сегодня в каждой аптеке антибактериальные препараты представлены в широчайшем ассортименте, а вылечить с их помощью можно даже такие грозные болезни, как менингит и сепсис (общее заражение крови). Далёкие от медицины люди редко задумываются о том, когда изобрели первые антибиотики, и кому человечество обязано спасением огромного количества жизней. Ещё труднее представить, как лечили инфекционные болезни до этого революционного открытия.

Жизнь до антибиотиков

Ещё из курса школьной истории многие помнят, что продолжительность жизни до эпохи Новейшего времени была очень небольшой. Дожившие до тридцатилетнего возраста мужчины и женщины считались долгожителями, а процент детской смертности достигал невероятных значений.

Роды были своеобразной опасной лотереей: так называемая родильная горячка (инфицирование организма роженицы и смерть от сепсиса) считалась обычным осложнением, а лекарств от неё не было.

Ранение, полученное в сражении (а воевали люди во все времена много и практически постоянно), приводило обычно к смерти. И чаще всего не потому, что повреждались жизненно важные органы: даже травмы конечностей означали воспаление, заражение крови и смерть.

Древняя история и Средневековье

Древний Египт: заплесневевший хлеб как антисептик

Тем не менее, люди с древних времён знали о целебных свойствах некоторых продуктов в отношении инфекционных заболеваний. Например, ещё 2500 лет назад в Китае забродившая соевая мука использовалась для лечения гнойных ран, а ещё раньше индейцы майя с той же целью применяли плесень с особого вида грибов.

В Египте времён строительства пирамид заплесневевший хлеб являлся прототипом современных антибактериальных средств: повязки с ним значительно повышали шанс выздоровления в случае ранения. Использование плесневых грибов имело чисто практический характер до тех пор, пока учёные не заинтересовались теоретической стороной вопроса. Однако до изобретения антибиотиков в их современном виде было ещё далеко.

Новое время

В эту эпоху наука стремительно развивалась во всех направлениях, и медицина исключением не стала. Причины гнойных инфекций в результате ранения или оперативного вмешательства описал в 1867 году Д. Листер, хирург из Великобритании.

Именно он установил, что возбудителями воспаления являются бактерии, и предложил способ борьбы с ними при помощи карболовой кислоты. Так возникла антисептика, которая ещё долгие годы оставалась единственным более или менее успешным методом профилактики и лечения нагноений.

Краткая история открытия антибиотиков: пенициллина, стрептомицина и остальных

Врачи и исследователи отмечали низкую эффективность антисептиков в отношении возбудителей, проникших глубоко в ткани. Кроме того, действие лекарств ослаблялось биологическими жидкостями пациента и было коротким. Требовались более действенные препараты, и учёные всего мира активно работали в данном направлении.

В каком веке изобрели антибиотики?

Явление антибиоза (способности одних микроорганизмов уничтожать другие) было открыто в конце 19 столетия.

  • В 1887 году один из основоположников современной иммунологии и бактериологии – всемирно известный французский химик и микробиолог Луи Пастер – описал губительное действие почвенных бактерий на возбудителя туберкулёза.
  • Опираясь на его исследования, итальянец Бартоломео Гозио в 1896 году получил в ходе экспериментов микофеноловую кислоту, ставшую одним из первых антибактериальных средств.
  • Чуть позже (в 1899) немецкие врачи Эммерих и Лов открыли пиоценазу, подавляющую жизнедеятельность возбудителей дифтерии, тифа и холеры.
  • А ранее – в 1871 году – российские врачи Полотебнов и Манассеин обнаружили губительное действие плесневых грибов на некоторые болезнетворные бактерии и новые возможности в терапии венерических заболеваний. К сожалению, их идеи, изложенные в совместном труде «Патологическое значение плесени», не обратили на себя должного внимания и на практике широко не применялись.
  • В 1894 году И. И. Мечников обосновал практическое использование кисломолочных продуктов, содержащих ацидофильные бактерии, для лечения некоторых кишечных расстройств. Это позднее подтвердили практические исследования русского учёного Э. Гартье.

Тем не менее, эпоха антибиотиков началась в 20 веке с открытия пенициллина, положившего начало настоящей революции в медицине.

Изобретатель антибиотиков

Александр Флеминг — первооткрыватель пенициллина

Имя Александра Флеминга известно из школьных учебников биологии даже далёким от науки людям. Именно он считается первооткрывателем вещества с антибактериальным действием – пенициллина. За неоценимый вклад в науку в 1945 году британский исследователь получил Нобелевскую премию. Интерес для широкой публики представляют не только подробности сделанного Флемингом открытия, но и жизненный путь учёного, а также особенности его личности.

Родился будущий лауреат Нобелевской премии в Шотландии на ферме Лохвильд в многодетной семье Хуга Флеминга. Образование получать Александр начал в Дарвеле, где проучился до двенадцатилетнего возраста. Через два года обучения в академии Килмарнок перебрался в Лондон, где жили и работали старшие братья. Юноша трудился клерком, одновременно являясь студентом Королевского Политехнического института. Заниматься медициной Флеминг решил по примеру брата Томаса (врача-офтальмолога).

Поступив в медицинскую школу при госпитале Святой Марии, Александр в 1901 году получил стипендию этого учебного заведения. Поначалу молодой человек не отдавал выраженного предпочтения какой-либо конкретной области медицины. Его теоретические и практические работы по хирургии в годы учебы свидетельствовали о недюжинном таланте, однако Флеминг не чувствовал особого пристрастия к работе с «живым телом», благодаря чему и стал изобретателем пенициллина.

Судьбоносным для молодого врача оказалось влияние Алмрота Райта – известного профессора патологии, приехавшего в 1902 году в госпиталь.

Ранее Райт разработал и успешно применил вакцинацию от брюшного тифа, однако его интерес к бактериологии этим не ограничился. Он создал группу молодых перспективных специалистов, в которую попал и Александр Флеминг. Получив в 1906 году ученую степень, он был приглашен в команду и работал в исследовательской лаборатории больницы всю свою жизнь.

В годы Первой мировой войны молодой ученый служил в Королевской исследовательской армии в звании капитана. В период боевых действий и позднее, в созданной Райтом лаборатории, Флеминг изучал последствия ранений взрывчатыми веществами и способы профилактики и лечения гнойных инфекций. А пенициллин открыл сэр Александр уже 28 сентября 1928 года.

Необычная история открытия

Не секрет, что многие важные открытия были сделаны случайным образом. Однако для исследовательской деятельности Флеминга фактор случайности имеет особое значение. Еще в 1922 году он совершил свое первое значительное открытие в области бактериологии и иммунологии, простудившись и чихнув в чашку Петри с посевами болезнетворных бактерий. Через некоторое время ученый обнаружил, что в месте попадания его слюны колонии возбудителя погибли. Так был открыт и описан лизоцим – антибактериальное вещество, содержащееся в слюне человека.

Так выглядит чаша Петри с пророщенными грибами Penicillium notatum.

Не менее случайным образом мир узнал и о пенициллине. Здесь нужно отдать должное халатному отношению персонала к санитарно-гигиеническим требованиям. То ли чашки Петри были плохо вымыты, то ли споры плесневого гриба были занесены из соседней лаборатории, но в результате на посевы стафилококка попал Penicillium notatum. Еще одной счастливой случайностью стал длительный отъезд Флеминга. Будущего изобретателя пенициллина месяц не было в госпитале, благодаря чему плесень успела вырасти.

Вернувшись на работу, ученый обнаружил последствия неряшливости, однако не стал сразу выбрасывать испорченные образцы, а пригляделся к ним внимательнее. Обнаружив, что вокруг выросшей плесени колонии стафилококка отсутствуют, Флеминг заинтересовался этим явлением и начал изучать его детально.

Ему удалось определить вещество, вызвавшее гибель бактерий, которое он назвал пенициллином. Понимая важность своего открытия для медицины, британец посвятил более десяти лет исследованиям этого вещества. Были опубликованы работы, в которых он обосновывал уникальные свойства пенициллина, признавая, однако, что на данной стадии препарат непригоден для лечения людей.

Пенициллин, полученный Флемингом, доказал свою бактерицидную активность в отношении многих грамотрицательных микроорганизмов и безопасность для людей и животных. Тем не менее, препарат был нестабилен, терапия требовала частого введения огромных доз. Кроме того, в нем присутствовало слишком много белковых примесей, дававших негативные побочные эффекты. Эксперименты по стабилизации и очистке пенициллина велись британским ученым с тех пор, как самый первый антибиотик был открыт и вплоть до 1939-го года. Однако к положительным результатам они не привели, и Флеминг охладел к идее использования пенициллина для лечения бактериальных инфекций.

Изобретение пенициллина

Второй шанс открытый Флемингом пенициллин получил в 1940-м году.

В Оксфорде Говард Флори, Норман У. Хитли и Эрнст Чейн, объединив свои познания в химии и микробиологии, занялись получением пригодного к массовому использованию препарата.

Около двух лет потребовалось на то, чтобы выделить чистое действующее вещество и испытать его в клинических условиях. На этом этапе к исследованиям был привлечен первооткрыватель. Флемингу, Флори и Чейну удалось успешно вылечить несколько тяжелых случаев сепсиса и пневмонии, благодаря чему пенициллин занял свое законное место в фармакологии.

В последующем была доказана его эффективность в отношении таких заболеваний, как остеомиелит, родильная горячка, газовая гангрена, стафилококковая септицемия, гонорея, сифилис и многих других инвазивных инфекций.

Уже в послевоенные годы было выяснено, что пенициллином можно лечить даже эндокардит. Эта сердечная патология ранее считалась неизлечимой и приводила к летальному исходу в 100% случаев.

Многое о личности первооткрывателя говорит тот факт, что Флеминг категорически отказался патентовать свое открытие. Понимая всю значимость препарата для человечества, он считал обязательным сделать его доступным для всех. Кроме того, сэр Александр весьма скептически относился к собственной роли создания панацеи от инфекционных заболеваний, характеризуя её как «Миф Флеминга».

Таким образом, отвечая на вопрос о том, в каком году изобрели пенициллин, следует называть 1941г. Именно тогда был получен полноценный действенный препарат.

Параллельно разработка пенициллина велась США и России. Американскому исследователю Зельману Ваксману в 1943 удалось получить эффективный в отношении туберкулёза и чумы стрептомицин, а микробиолог Зинаида Ермольева в СССР в это же время получила крустозин (аналог, который почти в полтора раза превосходил зарубежные).

Производство антибиотиков

После научно и клинически подтверждённой эффективности антибиотиков встал закономерный вопрос об их массовом производстве. В то время шла Вторая мировая война, и фронту очень были нужны эффективные средства лечения раненых. В Великобритании возможность изготавливать лекарства отсутствовала, поэтому производство и дальнейшие исследования были организованы в США.

С 1943 года пенициллин стал выпускаться фармацевтическими компаниями в промышленных объёмах и спас миллионы людей, увеличив и среднюю продолжительность жизни. Значимость описанных событий для медицины в частности и истории в целом переоценить трудно, поскольку тот, кто открыл пенициллин, совершил настоящий прорыв.

Значение пенициллина в медицине и последствия его открытия

Антибактериальное вещество плесневого гриба, выделенное Александром Флемингом и усовершенствованное Флори, Чейном и Хитли, стало основой для создания множества различных антибиотиков. Как правило, каждый препарат активен в отношении определённого вида болезнетворных бактерий и бессилен против остальных. Например, пенициллин не эффективен против палочки Коха. Тем не менее, именно разработки первооткрывателя позволили Ваксману получить стрептомицин, ставший спасением от туберкулёза.

Эйфория 50-х годов прошлого века по поводу открытия и массового производства «волшебного» средства казалась вполне оправданной. Грозные заболевания, столетиями считавшиеся смертельными, отступили, и появилась возможность существенно улучшить качество жизни. Некоторые учёные столь оптимистично смотрели в будущее, что предрекали даже скорый и неминуемый конец любым инфекционным заболеваниям. Однако даже тот, кто придумал пенициллин, предупреждал о возможных неожиданных последствиях. И как показало время, инфекции никуда не исчезли, а открытие Флеминга можно оценивать двояко.

Положительный аспект

Терапия инфекционных заболеваний с приходом в медицину пенициллина изменилась радикально. На его основе были получены препараты, эффективные против всех известных возбудителей. Теперь воспаления бактериального происхождения лечатся довольно быстро и надёжно курсом инъекций или таблеток, а прогнозы на выздоровление почти всегда благоприятны. Значительно снизилась детская смертность, увеличилась продолжительность жизни, а смерть от родильной горячки пневмонии стала редчайшим исключением. Почему же инфекции как класс никуда не исчезли, а продолжают преследовать человечество не менее активно, чем 80 лет назад?

Отрицательные последствия

На момент обнаружения пенициллина было известно много разновидностей болезнетворных бактерий. Учёным удалось создать несколько групп антибиотиков, с помощью которых можно было справиться со всеми возбудителями. Однако в ходе применения антибиотикотерапии выяснилось, что микроорганизмы под действием препаратов способны мутировать, приобретая устойчивость. Причём новые штаммы образуются в каждом поколении бактерий, сохраняя резистентность на генетическом уровне. То есть люди своими руками создали огромное количество новых «врагов», которых до изобретения пенициллина не существовало, и теперь человечество вынуждено постоянно искать новые формулы антибактериальных средств.

Выводы и перспективы

Получается, что открытие Флеминга было ненужным и даже опасным? Конечно же, нет, поскольку к таким результатам привело исключительно бездумное и бесконтрольное использование полученного «оружия» против инфекций. Тот, кто изобрел пенициллин, ещё в начале 20 века вывел три основных правила безопасного применения антибактериальных средств:

  • выявление конкретного возбудителя и использование соответствующего препарата;
  • достаточная для гибели возбудителя дозировка;
  • полный и непрерывный курс лечения.


К сожалению, люди редко следуют этой схеме. Именно самолечение и небрежность стали причиной появления бесчисленных штаммов болезнетворных микроорганизмов и трудно поддающихся антибактериальной терапии инфекций. Само же открытие пенициллина Александром Флемингом – это великое благо для человечества, которому всё ещё нужно учиться использовать его рационально.

ГБОУ города Москвы Гимназия №1505

«Московская городская педагогическая гимназия-лаборатория»

Реферат
Устойчивость бактерий к антибиотикам

Алексеенок Мария

Руководитель: Ноздрачева А. Н.

Глава 1. Антибиотики ………………..……………………………….…………………11

  1. Что такое антибиотики? ……………..……………………………….….………4
  2. История создания антибиотиков …..……………………………….……………4
  3. Как антибиотики воздействуют на бактерии? ..………………….……………4
  4. Почему антибиотик не убивает клетки хозяйского организма? …..…………..5
  5. Возникновение устойчивости бактерий к антибиотикам ……………….……5

……………………6

Глава 3.Горизонтальный перенос генов ………………….………………………….8

Глава 4.Биопленки ………………………..………………..……………………….…..9

Заключение ………………………………………………………………………………..10

Список литературы ………………………………….…………………………………..10
Введение

В наше время в медицине широко используются антибиотики. Но в процессе их использования, обнаружилось возникновение устойчивости к антибиотикам у бактерий. И чем дольше человечество лечится антибиотиками, тем быстрее бактерии приспосабливаются к новым препаратам, так как отбираются не только сами гены устойчивости, но и механизмы их быстрого приобретения патогенными бактериями. Наука начала исследовать причины данного явления и выявила несколько механизмов устойчивости бактерий к антибиотикам.

Эта тема рассмотрена многими учеными, и потому написана научным языком. Меня проблема устойчивости заинтересовала по двум причинам. Во-первых, у меня заболел дедушка, и в процессе его лечения возникла проблема, так как бактерии-возбудители его болезни оказались устойчивыми практически ко всем антибиотикам. Также моя мама занимается изучением этой проблемы, и мне стало интересно разобраться в этой теме. Я поняла, что эта проблема действительно важна для всех. Поэтому я решила написать про устойчивость бактерий к антибиотикам понятным для школьников языком.

Целью моего реферата, является изучение и изложение понятным для школьников языком механизмов устойчивости бактерий к антибиотикам.

Мной были поставлены следующие задачи:

1. Дать определение антибиотикам

2. Рассказать, кто и когда открыл антибиотики.

3. Описать механизм действия антибиотиков на бактерии.

4. Ответить на вопрос: «Почему антибиотик не убивает эукариотические клетки?»

5. Описать механизмы устойчивости бактерий к антибиотикам.

6. Рассказать, что такое биопленки и горизонтальный перенос генов, и какую роль они играют в устойчивости бактерий к антибиотикам.

Структура работы: реферат состоит из введения, глав с теоретическим обзором, заключения и источников.

Глава 1. Антибиотики

1.1 Что такое антибиотики?

Изначально антибиотики определялись как органические вещества природного или полусинтетического происхождения, способные убивать бактерии или замедлять их рост. В последнее время врачи и ученые перестали разделять понятия антибиотики и химиопрепараты (антибиотики полностью синтетического происхождения) .

1.2 История создания антибиотиков

Еще с древних времен люди использовали плесень для обеззараживания ран. Но первый антибиотик (пенициллин) был открыт в 1928 году Александром Флемингом. Пенициллин для лечебного применения разработали ученые Флори и Чейн .

После открытия пенициллина ученые открыли множество других антибиотиков, таких как: актиномицин, неомицин, стрептотрицин, бацитрацин, полимиксин, виомицин, хлорамфеникол. Учеными были разработаны химические модификации природных антибиотиков, обладающие лучшими лечебными свойствами. Они были менее токсичны, дольше не разрушались в организме человека, лучше проникали в органы и ткани, были способны подавлять больше видов бактерий .
1.3. Как антибиотики воздействуют на бактерии?

Антибиотик необратимо связывается с мишенью (ферментами, участвующими в синтезе ДНК, РНК, белков и клеточной стенки), что приводит к остановке ключевой (жизненно важной) реакции. В результате этого, бактерия гибнет или перестает делиться (рис.1) .

Рисунок 1. Механизм действия антибиотиков на бактерии.

1.4. Почему антибиотик не убивает клетки хозяйского организма?

Поскольку структура эукариотических белков, отвечающих за ключевые биохимические реакции в клетке, отличается от прокариотических, то антибиотики, действующие на бактерии, не токсичны для эукариотов. Самой безопасной группой антибиотиков являются пенициллины, так как они нарушают образование пептидогликана, входящего в состав клеточной стенки бактерий. А у эукариот пептидогликан не образуется .

1.5. Возникновение устойчивости бактерий к антибиотикам

Создание первых антибиотиков помогло человечеству справиться со многими смертельными заболеваниями. Например, с туберкулезом, воспалением легких, различных стафилококковых инфекций и многих других. Однако, чуть более чем через 10 лет после начала применения первых антибиотиков выяснилось, что у бактерий возникает к ним устойчивость. Кроме этого в последние годы ученые обнаружили, что теперь к новым антибиотикам устойчивость возникает быстрее, чем раньше. Многолетние научные исследования всех проблем, связанных с возникновением устойчивости у бактерий, выявили три основные причины этого явления. Первая – горизонтальный перенос генов

устойчивости, вторая – возникновение спонтанных мутаций и третья – образование бактериями биопленок.

А теперь детально остановимся на основных механизмах и путях возникновения устойчивости к антибиотикам.

Глава 2. Механизмы устойчивости бактерий к антибиотикам
Рисунок 2. Биохимические механизмы лекарственной устойчивости. Составлено на основании схемы, приведенной в статье С. З. Миндлин, М.А. Петрова, И. А. Басс, Ж. М. Горленко. Происхождение, эволюция и миграция генов лекарственной устойчивости // Генетика.

2006. Т. 42. №11. С. 1495.
Различные биохимические механизмы приводят к устойчивости бактерий к антибиотикам (рис. 2) .

Выделяют следующие механизмы:

  1. Снижение проницаемости мембраны.
  2. Активный вынос антибиотика из клетки.
  3. Инактивация антибиотика.
  4. Модификация антибиотика.
  5. Модификация молекулы-мишени.

Известны также и другие более редкие механизмы устойчивости.

Первый механизм заключается в снижении проницаемости клеточной мембраны за счет изменения ее химического состава.

Если же антибиотик проник в бактерию, то он может либо активно выносится из клетки, либо инактивироваться. Активный транспорт антибиотика из клетки происходит благодаря работе специализированных белков, которые образуют трансмембранные помпы, транспортирующие антибиотики. Инактивация происходит за счет того, что бактерия образует специальные ферменты, которые изменяют химическую структуру антибиотика, в результате чего он теряет свою антибактериальную активность. Изменения химической структуры могут происходить путем деградации или модификации антибиотика. Деградация – процесс разрушения молекулы антибиотика, например за счет гидролиза. Модификация – процесс изменения структуры молекулы антибиотика, например за счет присоединения дополнительных функциональных химических групп.Функциональная группа - структурный фрагмент органической молекулы (некоторая группа атомов), определяющий её химические свойства .

Другим механизмом является модификация молекулы-мишени бактерии, в результате чего нарушается связывание антибиотика и мишени. Мишень – это молекула, с которой связывается антибиотик и нарушает ее функции, что в результате убивает бактерию. Чаще всего мишенями служат ДНК-полимераза, РНК-полимераза, рибосома. А для ß-лактамаз мишенью является дипептид, из которого формируется клеточная стенка. Модификация мишени происходит за счет возникновения спонтанных генных мутаций или наличия специальных генов. Устойчивость к рифампицину — яркий пример устойчивости, возникшей за счет генной мутации. Рифампицин связывается с одним из белков (бэта-субъединицей), входящим в состав РНК-полимеразы, в результате чего происходит инактивация всего фермента. Устойчивость к рифампицину возникает в результате мутаций в гене, кодирующем бэта субъединицу. Это происходит за счет трансверсии последовательности AT в TA. В результате в белке бэта-субъединицы аспарагиновая кислота заменяется на валин. В результате этого рифампицин уже не способен связываться с таким измененным ферментом. Относительно высокая частота возникновения мутаций в гене бэта-субъединицы РНК-полимеразы приводит к быстрому отбору устойчивых мутантов, что в значительной степени ограничивает использование этого антибиотика против чувствительных бактерий .

Из более редких механизмов известно образование метаболического шунта – замены одной цепи реакций на другую. Например, этот механизм используется бактериями энтерококков для устойчивости к ванкомицину.

Этот антибиотик необратимо связывается с дипептидом D-Ala-D-Ala, входящего в состав молекулы-предшественника, из которой формируется клеточная стенка. В результате такой связи клеточная стенка не может образовываться, и бактерия всегда погибает. Ученые думали, что устойчивости к такому антибиотику не возникнет, но через 30 лет она появилась. У устойчивых штаммов обнаружили вместо дипептида D-Ala-D-Ala другой – D-Ala-D-Lac, с которым антибиотик не связывается. У устойчивых бактерий обнаруживают семь дополнительных генов, полученных путем горизонтального переноса. Именно эти гены участвуют в синтезе альтернативного предшественника клеточной стенки. Причем только после попадания в клетку антибиотика .

Существует и такой интересный механизм устойчивости как имитация молекулы-мишени. В ходе исследований у бактерий Mycobacterium smegmatis и Mycobacterium bovis обнаружили белок, который сворачивается в третичную структуру, очень похожую на структуру двойной спирали ДНК. Этот белок состоит из 5 аминокислот, свернутых в правозакрученную спираль точно такой же ширины, с таким же зарядом и спектром поглощения света как у молекулы ДНК. Антибиотик (из группы фторхинолонов), проникший в клетку, связывается с белком, а не с ДНК. В результате антибиотик не влияет на синтез ДНК .

Одна бактериальная клетка может обладать одновременно несколькими различными механизмами устойчивости к одному антибиотику .

Устойчивость бактерий к антибиотикам бывает врожденной и приобретенной. Врожденная устойчивость может быть обусловлена особенностью строения внешних структур или способностью данного вида или рода бактерий выделять вещество, инактивирующее антибиотик. А приобретенная устойчивость возникает при передаче генов путем горизонтального переноса генов, либо за счет возникновения спонтанной мутации. Все механизмы, которыми обладает бактерия передаются по наследству, так как они кодируются на ДНК .

Глава 3. Горизонтальный перенос генов

Горизонтальный перенос генов (ГПГ) – это процесс передачи генетической информации организму, не являющемуся потомком. Для ГПГ необходимо участие как минимум двух независимых процессов: физического переноса ДНК и встраиванию перенесенной ДНК в реципиентный геном, благодаря чему происходит стабильное наследование приобретенных таким путем признаков .

Главную роль в ГПГ играют разные мобильные генетические элементы: плазмиды, транспозоны, IS-элементы и другие.

Плазмиды – внехромосомные генетические элементы, в виде замкнутой или линейной молекулы ДНК, способные долго автономно существовать в клетке. Плазмиды осуществляют физический перенос генов между клетками разных бактерий. Также они являются платформой, на которой происходит постоянный обмен генетическим материалом за счет различных систем рекомбинации. Рекомбинация – процесс обмена похожими участками ДНК.

Транспозон – последовательность ДНК, способная перемещаться внутри генома. Транспозоны содержат гены транспозиции и дополнительные гены и ограничены специальными прямыми или инвертированными концевыми повторами.

IS-элементы схожи с транспозонами, но они кодируют только белки, участвующие в процессе транспозиции. Также они могут являться частью сложных транспозонов.

Из-за массового неконтролируемого употребления антибиотиков и плохой экологии, произошло снижение природных барьеров, ограничивающих возможность ГПГ у бактерий. Это привело к тому, что гены устойчивости к антибиотикам.

стали передаваться с большей частотой, чем раньше.

Глава 4. Биопленки

Устойчивость к антибиотикам может также возникать благодаря формированию бактериями биопленок. Биопленки – надклеточная система, состоящая из бактериального сообщества, имеющая пленочную структуру . Биопленки способны выживать при максимальных терапевтических дозировках антибиотиков. Биопленки могут проявлять устойчивость к нескольким антибиотикам. Это происходит по следующим причинам.

  1. Существование в биопленках особых персистирующих форм бактерий или персистеров. Персистер – это особая форма клетки, в которой не происходят биохимические реакции. Таким образом, антибиотик не воздействует на клетку, потому что в ней не происходят реакции, а антибиотик воздействует на функционирующие клетки. Через некоторое время клетка выходит из такого состояния и начинает функционировать.
  2. Фильтрационная способность матрикса. Из-за того, что матрикс бактериальных биоплёнок состоит из различных биополимеров – полисахаридов, белков и даже ДНК, матрикс не только связывает клетки в единую структуру, но и заполняет межклеточные пространства, что позволяет биопленке выводить антибиотики.
  3. Популяции бактерий, составляющие биопленку, также могут обладать разными вышеупомянутыми защитными механизмами, дополняющими друг друга.

Таким образом, образование бактериальных биопленок, делает бактерии более устойчивыми к антибиотикам, чем свободноживущие клетки .
Заключение

Развитие и распространение множественной устойчивости к антибиотикам среди болезнетворных бактерий уже сейчас создает серьезные проблемы при лечении инфекций человека и животных. Кроме того существует реальная опасность того, что в дальнейшем лечение антибиотиками вообще станет неэффективным. Поэтому нужны новые механизмы борьбы с болезнетворными бактериями. В данный момент учеными разрабатываются новые стратегии для борьбы с бактериальными заболеваниями. Но сейчас основной задачей человечества является прекращение бесконтрольного использования антибиотиков. Другими словами не следует использовать антибиотики без серьезной угрозы здоровью.

В данной работе цели и задачи мной были достигнуты.
Список литературы:

  1. Миндлин С.З., Петрова М.А., Басс И.А., Горленко Ж.М. Происхождение, эволюция и миграция генов лекарственной устойчивости // Генетика. 2006. Т. 42. №11. С. 1495-1511.
  2. Петрова М.А. Горизонтальный перенос генов устойчивости к соединениям ртути и антибиотикам в природных популяциях палеобактерий. Диссертация на соискание степени доктора биологических наук. Москва: 2013. С. 52-89.
  3. Егоров Н. С. Основы учения об антибиотиках. Учебник (изд. 6-е). М.: Издательство МГУ, 2004. С. 7-61.
  4. Энциклопедия для детей Аванта+ // Химия. Т.17. М.: Аванта+, 2004. С. 329.
  5. Ovchinnikov Yu.A., Monastyrskaya G.S., Gubanov V.V., Lipkin V.M., Sverdlov E.D., Kiver I.F., Bass I.A., Mindlin S.Z., Danilevskaya O.N., Khesin R.B. Primary structure of Escherichia coli RNA polymerase nucleotide substitution in the beta subunit gene of the rifampicin resistant rpoB255 mutant // Molecular and General Genetics. 1981. V.184. №3. С. 536-538
  6. Чеботарь И.В., Маянский А.Н.,Кончакова Е.Д., Лазарева А.В., Чистякова В.П. Антибиотикорезистентность биопленочных бактерий // Клиническая микробиология и антимикробная химиотерапия. 2012. Т. 14, № 1. С. 51-58.

Достарыңызбен бөлісу:

Антибиотики

Много веков назад было замечено, что зеленая плесень помогает в лечении тяжелых гнойных ран. Но в те далекие времена не знали ни о микробах, ни об антибиотиках. Первое научное описание лечебного действия зеленой плесени сделали в 70-х годах 19 века русские ученые В.А.Манассеин и А.Г. Полотебнов. После этого на несколько десятилетий о зеленой плесени забыли, и только в 1929 году она стала настоящей сенсацией, перевернувшей научный мир. Феноменальные качества этого неприятного живого организма изучил профессор микробиологии Лондонского университета Александр Флеминг.

Опыты Флеминга показали, что зеленая плесень вырабатывает особое вещество, обладающее антибактериальными свойствами и подавляющее рост многих болезнетворных микроорганизмов.

Антибиотики. История получения и применения антибиотиков

Это вещество ученый назвал пенициллином, по научному названию вырабатывающих его плесневых грибов. В ходе дальнейших исследований Флеминг выяснил, что пенициллин губительно действует на микробы, но вместе с тем не оказывает отрицательного действия на лейкоциты, принимающие активное участие в борьбе с инфекцией, и другие клетки организма. Но Флемингу не удалось выделить чистую культуру пенициллина для производства лекарственных препаратов.

Учение об антибиотиках — молодая синтетическая ветвь современного естествознания. Впервые в 1940 году был получен в кристаллическом виде химиотерапевтический препарат микробного происхождения – пенициллин — антибиотик, открывший летоисчисление эры антибиотиков.

Многие учёные мечтали о создании таких препаратов, которые можно было бы использовать при лечении различных заболеваний человека, о препаратах, способных убивать патогенных бактерий, не оказывая вредного действия на организм больного.

Пауль Эрлих (1854-1915) в результате многочисленных опытов синтезировал в 1912 году мышьяковистый препарат — сальварсан, убивающий in vitro возбудителя сифилиса. В 30-х годах прошлого столетия в результате химического синтеза были получены новые органические соединения – сульфамиды, среди которых красный стрептоцид (пронтозил) был первым эффективным препаратом, оказавшим терапевтическое действие при тяжёлых стрептококковых инфекциях.

Он долгое время пребывал в гордом одиночестве, если не считать используемого индейцами Южной и Центральной Америки для лечения малярии хинина — алкалоида хинного дерева. Только спустя четверть века были открыты сульфаниламидные препараты, а в 1940 году Александр Флеминг выделил в чистом виде пенициллин.

В 1937 году в нашей стране был синтезирован сульфидин – соединение, близкое к пронтозилу. Открытие сульфамидных препаратов и применение их в медицинской практике составило известную эпоху в химиотерапии многих инфекционных заболеваний, в том числе сепсиса, менингита, пневмонии, рожистого воспаления, гонореи и некоторых других.

Луи Пастер и С. Джеберт в 1877 году сообщили, что аэробные бактерии подавляют рост Bacillus anthracis.

В конце XIX века В. А. Манассеин (1841-1901) и А. Г. Полотебнов (1838-1908) показали, что грибы из рода Penicillium способны задерживать в условиях in vivo развитие возбудителей ряда кожных заболеваний человека.

И. И. Мечников (1845 — 1916) ещё в 1894 году обратил внимание на возможность использования некоторых сапрофитных бактерий в борьбе с патогенными микроорганизмами.

В 1896 году Р. Гозио из культурной жидкости Penicillium brevicompactum выделил кристаллическое соединение — микофеноловую кислоту, подавляющее рост бактерий сибирской язвы.

Эммирих и Лоу в 1899 году сообщили об антибиотическом веществе, образуемом Pseudomonas pyocyanea, они назвали его пиоцианазой; препарат использовался в качестве лечебного фактора как местный антисептик.

В 1910-1913 годах O. Black и U. Alsberg выделили из гриба рода Penicillium пеницилловую кислоту, обладающую антимикробными свойствами.

В 1929 году А. Флемингом был открыт новый препарат пенициллин , который только в 1940 году удалось выделить в кристаллическом виде.

Открытие Флеминга

В 1922 году после неудачных попыток выделить возбудителя простудных заболеваний Флеминг чисто случайно открыл лизоцим (название придумал профессор Райт) — фермент, убивающий некоторые бактерии и не причиняющий вреда здоровым тканям. К сожалению, перспективы медицинского использования лизоцима оказались довольно ограниченными, поскольку он был достаточно эффективным средством против бактерий, не являющихся возбудителями заболеваний, и совершенно неэффективным против болезнетворных организмов. Это открытие побудило Флеминга заняться поисками других антибактериальных препаратов, которые были бы безвредны для организма человека.

Следующая счастливая случайность - открытие Флемингом пенициллина в 1928 году — явилась результатом стечения ряда обстоятельств, столь невероятных, что в них почти невозможно поверить. В отличие от своих аккуратных коллег, очищавших чашки с бактериальными культурами после окончания работы с ними, Флеминг не выбрасывал культуры по 2-3 недели, пока его лабораторный стол не оказывался загроможденным 40-50 чашками. Тогда он принимался за уборку, просматривал культуры одну за другой, чтобы не пропустить что-нибудь интересное. В одной из чашек он обнаружил плесень, которая, к его удивлению, угнетала высеянную культуру бактерии. Отделив плесень, он установил, что «бульон», на котором разрослась плесень, приобрел выраженную способность подавлять рост микроорганизмов, а также имел бактерицидные и бактериологические свойства.

Неряшливость Флеминга и сделанное им наблюдение явились двумя обстоятельствами в целом ряду случайностей, способствовавших открытию. Плесень, которой оказалась заражена культура, относилась к очень редкому виду. Вероятно, она была занесена из лаборатории, где выращивались образцы плесени, взятые из домов больных, страдающих бронхиальной астмой, с целью изготовления из них десенсибилизирующих экстрактов. Флеминг оставил ставшую впоследствии знаменитой чашку на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а последовавшее затем потепление - для бактерий. Как выяснилось позднее, стечению именно этих обстоятельств было обязано знаменитое открытие.

Первоначальные исследования Флеминга дали ряд важных сведений о пенициллине. Он писал, что это «эффективная антибактериальная субстанция…, оказывающая выраженное действие на пиогенные кокки и палочки дифтерийной группы. .. Пенициллин даже в огромных дозах не токсичен для животных… Можно предположить, что он окажется эффективным антисептиком при наружной обработке участков, пораженных чувствительными к пенициллину микробами, или при его введении внутрь». Зная это, Флеминг не сделал тем не менее столь очевидного следующего шага, который 12 лет спустя был предпринят Хоуардом У. Флори и состоял в том, чтобы выяснить, будут ли спасены от летальной инфекции мыши, если лечить их инъекциями пенициллинового бульона. Флеминг назначил его нескольким пациентам для наружного применения. Однако результаты были противоречивыми. Раствор оказался нестабильным и с трудом поддавался очистке, если речь шла о больших его количествах.

Подобно Пастеровскому институту в Париже, отделение вакцинации в больнице Св. Марии, где работал Флеминг, существовало благодаря продаже вакцин. Флеминг обнаружил, что в процессе приготовления вакцин пенициллин помогает предохранить культуры от стафилококка. Это было техническое достижение, и ученый широко пользовался им, еженедельно отдавая распоряжения изготовлять большие партии бульона. Он делился образцами культуры пенициллина с коллегами в других лабораториях, но ни разу не упомянул о пенициллине ни в одной из 27 статей и лекций, опубликованных им в 1930-1940 годы, даже если речь шла о веществах, вызывав ющих гибель бактерий.

Таким образом, к моменту получения пенициллина в очищенном виде было известно пять антибиотических средств (микофеноловая кислота, пиоцианаза, актиномицетин, мицетин и тиротрицин). В последующем число антибиотиков быстро росло и к настоящему времени их описано почти 7000 (образуемых лишь микроорганизмами); при этом только около 160 используется в медицинской практике. С получением пенициллина как препарата (1940 год) возникло новое направление в науке – учение об антибиотиках, которое необычайно быстро развивается в последние десятилетия.

В 70-х годах ежегодно описывалось более 300 новых антибиотиков. В 1937 году Вельш описал первый антибиотик стрептомицетного происхождения актимицетин, в 1939 году Красильниковым и Кореняко был получен мицетин и Дюбо – тиротрицин. Впоследующем число антибиотиков росло очень быстрыми темпами.

Нобелевская премия по физиологии и медицине 1945 года была присуждена совместно Флемингу, Чейну и Флори «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях». В Нобелевской лекции Флеминг отметил, что «феноменальный успех пенициллина привел к интенсивному изучению антибактериальных свойств плесеней и других низших представителей растительного мира. Лишь немногие из них обладают такими свойствами».

В оставшиеся 10 лет жизни ученый был удостоен 25 почетных степеней, 26 медалей, 18 премий, 30 наград и почетного членства в 89 академиях наук и научных обществах.

Побочные действия

Однако антибиотики - это не только панацея от микробов, но и сильные яды. Ведя на уровне микромира между собой смертоносные войны, с их помощью одни микроорганизмы безжалостно расправляются с другими. Человек подметил это свойство антибиотиков и использовал его в своих целях - начал расправляться с микробами их же собственным оружием, создал на основе природных сотни еще более мощных синтетических препаратов. И все же предначертанное антибиотикам самой природой свойство убивать по-прежнему неотъемлемо от них.

Все антибиотики, без исключений, обладают побочными действиями! Это следует уже из самого названия таких веществ. Естественное природное свойство всех антибиотиков убивать микробы и микроорганизмы, к сожалению, невозможно направить на уничтожение только одного вида бактерий или микробов. Уничтожая вредные бактерии и микроорганизмы, любой антибиотик неминуемо оказывает такое же угнетающее воздействие и на все схожие с "врагом" полезные микроорганизмы, которые, как известно, принимают активное участие практически во всех процессах происходящих в нашем организме.

Народной медицине давно были известны некоторые способы применения в качестве лечебных средств микроорганизмов или продуктов их обмена, однако причина их лечебного действия в то время оставалась неизвестной. Например, для лечения некоторых язв, кишечных расстройств и других заболеваний в народной медицине применялся заплесневевший хлеб.

В 1871-1872 гг. появились работы русских исследователей В. А. Манассеина и А. Г. Полотебнова, в которых сообщалось о практическом использовании зеленой плесени для заживления кожных язв у человека. Первые сведения об антагонизме бактерий были обнародованы основоположником микробиологии Луи Пастером в 1877 г. Он обратил внимание на подавление развития возбудителя сибирской язвы некоторыми сапрофитными бактериями и высказал мысль о возможности практического использования этого явления.

С именем русского ученого И. И. Мечников а (1894) связано научно обоснованное практическое использование антагонизма между энтеробактериями, вызывающими кишечные расстройства, и молочнокислыми микроорганизмами, в частности болгарской палочкой («мечниковская простокваша»), для лечения кишечных заболеваний человека.

Русский врач Э. Гартье (1905) применил кисломолочные продукты, приготовленные на заквасках, содержащих ацидофильную палочку, для лечения кишечных расстройств.

История открытия антибиотиков

Как оказалось, ацидофильная палочка обладает более ярко выраженными антагонистическими свойствами по сравнению с болгарской палочкой.

В конце XIX - начале XX в. были открыты антагонистические свойства у спорообразующих бактерий. К этому же периоду относятся первые работы, в которых описываются антагонистические свойства у актиномицетов. Позднее из культуры почвенной спороносной палочки Bacillus brevis Р. Дюбо (1939) удалось выделить антибиотическое вещество, названное тиротрицином, которое представляло собой смесь двух антибиотиков - тироцидина и грамицидина. В 1942 г. советскими исследователями Г. Ф. Гаузе и М. Г. Бражниковой был выделен из подмосковных почв новый штамм Bacillus brevis, синтезирующий антибиотик грамицидин С, отличающийся от грамицидина Дюбо.

В 1939 г. Н. А. Красильников и А. И. Кореняко из культуры фиолетового актиномицета Actinomyces violaceus, выделенного ими из почвы, получили первый антибиотик актиномицетного происхождения - мицетин - и изучили условия биосинтеза и применения мицетина в клинике.

А. Флеминг, изучая стрептококков, выращивал их на питательной среде в чашках Петри. На одной из чашек вместе со стафилококками выросла колония плесневого гриба, вокруг которой стафилококки не развивались. Заинтересовавшись этим явлением, Флеминг выделил культуру гриба, определенную затем как Penicillium notatum. Выделить вещество, подавляющее рост стафилококков, удалось только в 1940 г. оксфордской группе исследователей. Полученный антибиотик был назван пенициллином.

С открытия пенициллина началась новая эра в лечении инфекционных болезней - эра применения антибиотиков. В короткий срок возникла и развилась новая отрасль промышленности, производящая антибиотики в крупных масштабах. Теперь вопросы микробного антагонизма приобрели важное практическое значение и работы по выявлению новых микроорганизмов - продуцентов антибиотиков стали носить целенаправленный характер.

В СССР получением пенициллина успешно занималась группа исследователей под руководством 3. В. Ермольевой. В 1942 г. был выработан отечественный препарат пенициллина. Ваксманом и Вудрафом из культуры Actinomyces antibioticus был выделен антибиотик актиномицин, который впоследствии стал использоваться как противораковое средство.

Первым антибиотиком актиномицетного происхождения, нашедшим широкое применение особенно при лечении туберкулеза, был стрептомицин, открытый в 1944 г. Ваксманом с сотрудниками. К противотуберкулезным антибиотикам относятся также открытые позже виомицин (флоримицин), циклосерин, канамицин, рифамицин.

В последующие годы интенсивные поиски новых соединений привели к открытию ряда других терапевтически ценных антибиотиков, нашедших широкое применение в медицине. К ним относятся препараты с широким спектром антимикробного действия. Они подавляют рост не только грамположительных бактерий, которые более чувствительны к действию антибиотиков (возбудители пневмонии, различных нагноений, сибирской язвы, столбняка, дифтерии, туберкулеза), но и грам отрицательных микроорганизмов, которые более устойчивы к действию антибиотиков (возбудители брюшного тифа, дизентерии, холеры, бруцеллеза, туляремии), а также риккетсий (возбудители сыпного тифа) и крупных вирусов (возбудители пситтакоза, лимфогранулематоза, трахомы и др.). К таким антибиотикам относятся хлорамфеникол (левомицетин), хлортетрациклин (биомицин), окситетрациклин (террамицин), тетрациклин, неомицин (колимицин, мицерин), канамицин, паромомицин (мономицин) и др. Кроме того, в распоряжении врачей в настоящее время имеется группа антибиотиков резерва, активных в отношении устойчивых к пенициллину грамположительных болезнетворных мик роорганизмов, а также противогрибные антибиотики (нистатин, гризеофульвин, амфотерицин В, леворин).

В настоящее время число известных антибиотиков приближается к 2000, однако в клинической практике используется всего около 50.

Антибиотик – это химическое вещество, которое производится одним организмом и разрушает другой. Название «антибиотик» произошло от слова «антибиоз» (с гр. «anti» — «против», «bios» — «жизнь») – термина, который в 1889 году ввел ученик Луи Пастера Пол Виллемин. Он означает процесс, посредством которого одна жизнь может быть использована для разрушения другой.

"Жизнь против жизни"

В широком понимании антибиотики – это общее название лекарственных средств, которые используют для борьбы с бактериальными заболеваниями. Они содержат вещества, которое вырабатывается некоторыми микробами. Антибиотики получают из растений, грибов, воды, почвы и даже воздуха. Попадая в организм, они атакуют и убивают инфекцию, но не повреждают здоровые клетки. Антибиотики используются для лечения различных опасных болезней, таких как туберкулез, сифилис, дифтерия и много других.

Люди используют антибиотики уже более 2500 лет. Конечно, раньше они имели несколько другой вид, нежели тот, к которому привык современный человек. Никаких таблеток и капсул – только то, что можно было достать в природе. К примеру, в качестве антибиотиков часто использовали плесень – она помогала вылечить сыпь, гнойные раны и кожные инфекции.

В конце 1800-х начался настоящий бум в сфере медицинских исследований. Главной причиной является изобретение инструмента, без которого сегодня не обходится ни одна лаборатория – микроскопа. Ученые впервые открыли для себя мир микроорганизмов, которых нельзя увидеть невооруженным глазом.

Луи Пастер обнаружил, что не все бактерии безвредны для человека. Он исследовал анализы множества больных пациентов и доказал существование болезнетворных бактерий. После него исследованием инфекций занялся Роберт Кох, который разработал метод выделения и размножения бактерий. С того момента ученые пытались разработать препараты, которые смогут убивать микробы, но все они оказывались либо опасными, либо неэффективными.

Открытие Александра Флеминга

Тысячи лет человечество безрезультатно боролось с эпидемиями смертоносных болезней. 90% детей умирали в младенческом возрасте от инфекций, которые сегодня можно вылечить за несколько дней. Еще двести лет назад не существовало эффективного лечения таких заболеваний, как пневмония, гонорея или ревматическая лихорадка.

Больницы были переполнены людьми с заражением крови, которое началось из-за банальной царапины или раны. Конечно, впоследствии все они умирали. Все изменилось только после изобретения антибиотика под названием пенициллин.

Антибиотики являются соединениями, продуцируемыми бактериями и грибами, которые способны убивать или ингибировать конкурирующие виды микроорганизмов. Это явление давно известно – еще древние египтяне применяли примочки с заплесневелого хлеба для инфицированных ран. Но пенициллин, первый настоящий антибиотик, был обнаружен только в 1928 году. Его открыл Александр Флеминг – профессор бактериологии в больнице Святой Марии в Лондоне.

Вернувшись из отпуска 3 сентября 1928 года, Флеминг начал сортировать чашки Петри, содержащие колонии стафилококковых бактерий, которые вызывают боль в горле, фурункулы и абсцессы. В одной из чашек он заметил что-то необычное. Она была усеяна колониями стафилококка, за исключением одной области. Крохотная зона, где находилась капля плесени, была абсолютно чистой от бактерий. Пространство вокруг плесени, которою позже назвали редким штаммом Penicillium notatum, было прозрачным. Казалось, что плесень выделяла нечто, препятствующее росту бактерий.

Флеминг обнаружил, что плесень способна убивать широкий спектр вредных бактерий, таких как стрептококк, менингококк и дифтерийная палочка. Затем он начал работать над новым заданием. Ученый поставил перед своими учениками Стюартом Крэддоком и Фредериком Ридли трудную задачу – они должны были выделить из плесени чистый пенициллин. Эксперимент до конца не удался – они смогли подготовить только растворы сырого материала.

Флеминг опубликовал свои результаты в «Британском журнале экспериментальной патологии» в июне 1929 года. В докладе он лишь слегка коснулся потенциальных терапевтических преимуществ пенициллина. На этом этапе было похоже, что главной целью его исследований будет поиск нечувствительных к пенициллину бактерий. Это, по крайней мере, имело практическое значение для бактериологов и сохраняло их интерес к пенициллину.

Другие ученые, в том числе Гарольд Райстрик, профессор биохимии Лондонской школы гигиены и тропической медицины, также пытались очистить пенициллин. Но все они потерпели неудачу.

Исследование пенициллина в Оксфордском университете

Говард Флори, Эрнст Чейн и их коллеги из школы патологии сэра Уильяма Данна в Оксфордском университете превратили пенициллин из лабораторного любопытства в жизненно важный препарат. Их работа по очистке пенициллина началась 1939 году. Из-за военных условий проводить исследования было особенно трудно. Для выполнения программы экспериментов на животных и клинических испытаний команде необходимо было обработать до 500 литров фильтрата плесени в неделю.

Они начали выращивать его в разнообразных емкостях, которые совсем не были похожи на сосуды для культивирования: ваннах, подносах, молочных бутылках и пищевых банках. Позже на их заказ был разработан специальный ферментационный сосуд. Ученые наняли команду «пенициллиновых девочек», которые следили за ферментацией. Фактически, лабораторию Оксфорда превратили в пенициллиновую фабрику.

Между тем, биохимик Норманн Хитли извлек пенициллин из огромных объемов фильтрата путем экстракции его в амилацетат, а затем обратно в воду с использованием противоточной системы. Эдвард Абрахам, другой биохимик, которого наняли для ускорения производства, задействовал недавно открытую методику хроматографии на колонке удаления примесей из пенициллина.

В 1940 году Говард Флори провел важные эксперименты, которые показали, что пенициллин может защитить мышей от инфицирования смертоносными стрептококками. Затем, 12 февраля 1941 года 43-летний полицейский Альберт Александер стал первым человеком, который испытал на себе оксфордский пенициллин. Он поцарапал губы во время обрезки роз, после чего развилась угрожающая жизни инфекция с огромными абсцессами, которые поразили глаза, лицо и легкие.

Через несколько дней после инъекции состояние пациента заметно улучшилось. Но запасы лекарств закончились, и через несколько дней он умер. Гораздо лучшие результаты последовали за другими пациентами, и вскоре возникли планы сделать пенициллин доступным для британских солдат, которые получали ранения на поле боя.

Производство пенициллина в США во время Второй мировой войны

Говард Флори признал, что крупномасштабное производство пенициллина невозможно осуществить в Британии, где химическая промышленность была полностью поглощена военными действиями. При поддержке фонда Рокфеллера Флори и его коллега Норман Хитли летом 1941 года отправились в Соединенные Штаты. Они планировали заинтересовать американскую фармацевтическую промышленность производством пенициллина в больших масштабах.

Йельский физиолог Джон Фултон связал своих британских коллег с людьми, которые могли бы помочь им в достижении этой цели. И вскоре она была достигнута – заняться производством решила Северная региональная исследовательская лаборатория Департамента (NRRL) в Пеории, штат Иллинойс.

Через несколько недель ученый Эндрю Мойер обнаружил, что можно значительно увеличить выход пенициллина, заменив лактозу, которые использовали оксфордские исследователи, сахарозой. Вскоре после этого он сделал еще более важное открытие – Мойер увидел, что добавление кукурузного раствора в среду для ферментации привело к десятикратному увеличению выхода.

Вскоре начался глобальный поиск лучших штаммов, которые продуцируют пенициллин. Образцы почв отправлялись в NRRL со всего мира. По иронии судьбы, наиболее подходящей оказалась заплесневевшая дыня с фруктового рынка Пеории. Более продуктивный мутант так называемого штамма канталупы был получен с использованием рентгеновских лучей в Институте Карнеги. Время шло, а применение пенициллина все еще ограничивалось клиническими испытаниями.

Стадии ферментации, восстановления, очистки и упаковки быстро уступили совместным усилиям ученых-химиков и инженеров, которые работали над экспериментальным производством пенициллина. 1 марта 1944 года компания Pfizer открыла первый коммерческий завод для крупномасштабного производства пенициллина в Бруклине, Нью-Йорк.

"Чудо-лекарство"

Тем временем клинические исследования в военном и гражданском секторах подтвердили терапевтические свойства пенициллина. Они показали, что препарат эффективен при лечении широкого спектра болезней, включая стрептококковые, стафилококковые и гонококковые инфекции. Армия США установила ценность пенициллина для лечения хирургических и раневых инфекций.

Клинические исследования также продемонстрировали его эффективность против сифилиса, и к 1944 году он стал основным средством лечения этой болезни в вооруженных силах Великобритании и Соединенных Штатов. Поскольку слухи относительно этого нового «чудо-лекарства» стала доходить до общественности, спрос на пенициллин увеличился. Но сначала поставки были ограничены, и приоритет отдавался военному использованию.

К счастью, с начала 1944 года производство пенициллина начало резко увеличиваться – с 21 до 1663 миллиардов единиц. А уже в 1945 году эта цифра составляла 6,8 триллионов. Американскому правительству удалось в конечном итоге снять все ограничения на доступность препарата, и состоянием на 15 марта 1945 года пенициллин стал доступен каждому потребителю – приобрести его можно было в ближайшей аптеке.

К 1949 году годовой объем производства пенициллина в Соединенных Штатах составлял 133,229 миллиарда единиц, а цена упала с 20 долларов (1943 год) до 10 центов.

На страже человечества

В настоящее время используется на фармацевтическом рынке доступно более 70 различных видов антибиотиков. Большинство из них используется для лечения инфекций, некоторые – для грибов и простейших. Сегодня они считаются полностью безопасным лекарством, конечно, при условии соблюдения дозировки.

Ученые постоянно работают над изобретением новых антибиотиков. Они испытывают тысячи природных растений и химических веществ. Это обусловлено тем, что инфекции вырабатывают иммунитет к устаревшим препаратам. С каждым годом они мутируют и совершенствуются, поэтому эффективное лечение значительно усложняется.

Антибиотики – великое изобретение, возможно, одно из лучших.

Они помогают людям выживать в борьбе с болезнями и инфекциями, которые в противном случае могли бы их убить. Антибиотики спасают жизни – что может быть полезней? Главное – использовать их с умом.

Способность одних микроорганизмов подавлять жизнь других (антибиоз ) была впервые установлена И. И. Мечниковым , который предложил использовать это свойство для лечебных целей: в частности, он применил для подавления жизнедеятельности вредных гнилостных бактерий кишечника молочнокислую палочку, которую предлагал вводить с простоквашей.

В 1868—1871 гг. В. А. Манассеин и А. Г. Полотебнов указали на способность зеленой плесени подавлять рост различных патогенных бактерий и с успехом применили ее для лечения инфицированных ран и язв.

Большое значение в учении об антибиотиках имели исследования Н. А. Красильникова, А. И. Кореняко, М. И. Нахимовской и Д. М. Новогрудского, которые установили Широкое распространение в Почве грибов, вырабатывающих различные антибиотические вещества.

В 1940 г. были разработаны методы излечения и получения из культуральной жидкости антибиотических веществ в чистом виде. Многие из этих антибиотических веществ оказались весьма эффективными при лечении ряда инфекционных болезней.

Наибольшее значение в медицинской практике получили следующие антибиотики:

Пенициллин,

Стрептомицин,

Левомицетин,

Синтомицин,

Тетрациклины,

Альбомицин,

Грамицидин С,

Мицерин и др.

В настоящее время известна химическая природа многих антибиотиков, что позволяет получать эти антибиотики не только из естественных продуктов, но и синтетическим путем.

Антибиотики, обладая способностью подавлять развитие патогенных микробов в организме, в то же время являются малотоксичными для организма человека. Задерживая развитие в организме патогенных микробов, они тем самым способствуют усилению защитных свойств организма и быстрейшему выздоровлению больного. Вот почему требуется правильный выбор антибиотика для лечения различных инфекционных заболеваний. В отдельных случаях можно пользоваться комбинацией антибиотиков или проводить комплексное лечение антибиотиками, сульфаниламидами и другими препаратами.

Пеницилин

Пенициллин — вещество, вырабатываемое плесенью Penicillium при росте ее на жидких питательных средах. Впервые оно было получено английским ученым А. Флемингом в 1928 г. В СССР пенициллин был получен 3. В. Ермольевой в 1942 г. Для получения пенициллина плесень засевают в специальную питательную среду, где по мере ее размножения накапливается пенициллин. Оптимальная температура роста Penicillium 24—26°. Максимальное накопление пенициллина происходит через 5—6 дней, а при интенсивном доступе кислорода (аэрации) — более быстро. Питательную жидкость фильтруют и подвергают специальной обработке и химической очистке. В результате получается очищенный препарат в виде кристаллического порошка. В жидком виде пенициллин нестоек, в порошке более устойчив, особенно при температуре 4—10°. Порошок быстро и полностью растворяется в дистиллированной воде или физиологическом растворе поваренной соли.

Пенициллин обладает способностью задерживать размножение в организме многих патогенных микробов— стафилококков, стрептококков, гонококков, анаэробных бацилл, спирохет сифилиса. Не действует пенициллин на палочки брюшного тифа, дизентерии, бруцеллы, туберкулезную палочку. Пенициллин широко применяют для лечения нагноительных «процессов, септических заболеваний, воспаления легких, гонореи, цереброспинального менингита, сифилиса, анаэробных инфекций.

В отличие от большинства синтетических химических препаратов пенициллин мало токсичен для человека и его можно вводить в больших дозах. Вводят пенициллин обычно внутримышечно, так как при введении через рот он быстро разрушается желудочным и кишечным соком.

В организме пенициллин быстро выводится почками, поэтому его назначают в виде внутримышечных инъекций через каждые 3—4 часа. Количество вводимого пенициллина исчисляется в единицах действия (ЕД). За единицу пенициллина принимают то количество его, которое полностью задерживает рост золотистого стафилококка в 50 мл бульона. Выпускаемые отечественной промышленностью препараты пенициллина содержат в одном флаконе от 200 000 до 500 000 ЕД пенициллина.

Для удлинения срока действия пенициллина в организме изготовлен ряд новых препаратов, содержащих пенициллин в комплексе с другими веществами, которые способствуют медленному всасыванию пенициллина и еще более медленному выделению его из организма почками (новоциллин, экмопенициллин, бициллин 1, 2, 3 и Др.). Некоторые из этих препаратов можно принимать внутрь, так как они не разрушаются под действием желудочного и кишечного сока. К числу таких препаратов относится, например, феноксиметилпенициллин; последний выпускается в виде таблеток для приема перорально.

В настоящее время получена большая группа новых препаратов пенициллина — полусинтетических пенициллинов. В основе этих препаратов лежит 6-амино-пеницил-линовая кислота, составляющая ядро пенициллина, к которой химическим путем присоединяются различные радикалы. Новые пенициллины (метициллин, оксациллин и др.) действуют на микроорганизмы, устойчивые к бензилпенициллину.

Наибольшее число антибиотиков вырабатывается лучистыми грибами — актиномицетами. Из этих антибиотиков широкое применение получили стрептомицин, хлоромицетин (левомицетин), биомицин (ауреомицин), террамицин, тетрациклин, колимиции, мицерин и др.

Стрептомицин

Стрептомицин — вещество, вырабатываемое лучистым грибом Actinomyces globisporus streptomycini. Он обладает способностью подавлять рост многих грамотрицательных и грамположительных бактерий, а также туберкулезной палочки. Недостатком стрептомицина является то, что микробы быстро к нему привыкают и становятся устойчивыми к его действию. Активность действия стрептомицина проверяют на кишечной палочке (Bact. coli). Практическое применение стрептомицин получил для лечения некоторых форм туберкулеза, особенно туберкулезного менингита, туляремии, а также в хирургической практике.

Хлоромицетин

Хлоромицетин получен в 1947 г. из культуральной жидкости актиномицетов. В 1949 г. учеными был синтезирован аналогичный препарат под названием левомицетина. Левомицетин представляет собой кристаллизированный порошок, очень устойчивый как в сухом состоянии, так и в растворах. Растворы левомицетина выдерживают кипячение в течение 5 часов. Левомицетин активен по отношению ко многим грамположительным и грамотрицательным бактериям, а также к риккетсиям. Принимают левомицетин через рот. Левомицетин рекомендуют применять для лечения следующих заболеваний: брюшного тифа и паратифов, сыпного тифа, бруцеллеза, коклюша, дизентерии и хирургических инфекций, вызванных грамотрицательными бактериями.

Наряду с левомицетином широко применяется другой синтетический препарат — синтомицин, представляющий собой неочищенный левомицетин. По своему действию синтомицин аналогичен левомицетину; он назначается в дозе в 2 раза большей, чем левомицетин.

Тетрациклины

К ним относится хлортетрациклин (ауреомицин, биомицин), окситетрациклин (терра-мицин) и тетрациклин. Хлортетрациклин получен из культуральной жидкости гриба Actinomyces aureofaciens, он обладает широким спектром действия против большинства грамположительных и грамотрицательных бактерий, простейших, риккетсий и некоторых крупных вирусов (орнитоза), хорошо всасывается при приеме перорально и диффундирует в ткани. Применяется для лечения дизентерии, бруцеллеза, риккетсиозов, сифилиса, орнитоза и других инфекционных заболеваний. Окситетрациклин и тетрациклин по своим свойствам напоминают хлортетрациклин и близкие к нему по механизму действия на микроб.

Неомицины

Неомицины — группа антибиотиков, полученных из культуральной жидкости актиномицетов, активны в отношении многих грамотрицательных и грамположительных бактерий, в том числе микобактерий. Их активность не снижается в присутствии белков крови или ферментов. Препараты плохо всасываются в желудочно-кишечном тракте, относительно мало токсичны. Применяются главным образом для местного лечения хирургических и кожных инфекций, вызванных стафилококками, устойчивыми к другим антибиотикам.

К группе неомицинов относятся советские препараты мицерин и колимицин, которые нашли широкое применение для лечения колиэнтеритов у детей, вызванных кишечными палочками или стафилококками, устойчивыми к другим антибиотикам.

Нистастин

Нистатин — антибиотик, эффективный не против бактерий, а против грибов. Он плохо растворяется в воде, поэтому его нельзя применять парентерально, а надо вводить внутрь в виде таблеток или местно в виде мазей.

Нистатин часто входит в состав таблеток вместе с другим антибиотиком — тетрациклином — с целью предотвращения кандидоза как осложнения при длительном применении тетрациклина.

Из антибиотиков бактериального происхождения пан большее значение имеет грамицидин.

Грамицидин

Грамицидин — вещество, полученное из культуры почвенной споровой палочки В. brevis. Название свое препарат получил в связи с тем, что он подавляет рост преимущественно грамположительных бактерий. В 1942 г. в СССР ученые открыли антибиотик, получивший название грамицидин С (советский грамицидин). Он обладает широким диапазоном действия, подавляя рост бактерий. Грамицидин С применяют в виде водно-спиртовых, спиртовых и масляных растворов только для местного лечения нагноительных и язвенных процессов.

Большой интерес представляют также антибиотики животного происхождения.

В 1887 г. Н. Ф. Гамалея указал на антибактериальное действие тканей животного организма. Затем в 1893 г. О. О. Успенский доказал бактерицидное действие экстрактов печени в отношении палочек сибирской язвы, сапа, стафилококков и других микробов.

Из антибиотиков животного происхождения получили применение следующие.

1. Лизоцим — вещество, продуцируемое клетками животных и человека. Впервые обнаружен П. Н. Лащенковым в 1909 г. в белке куриного яйца. Лизоцим содержится в слезах, секретах слизистых, в печени, селезенке, почках, сыворотке. Обладает способностью растворять как живых, так и мертвых микробов. Лизоцим в очищенном виде был применен 3. В. Ермольевой и И. С. Буяновской в клинической, промышленной и сельскохозяйственной практике. Наблюдается эффект от применения лизоцима при заболеваниях уха, горла, носа и глаз, при после гриппозных осложнениях.

2. Экмолин получен из рыбной ткани, биологически активен по отношению к тифозным и дизентерийным палочкам, стафилококкам и стрептококкам, действует также па вирус гриппа. Экмолин усиливает действие пенициллина и стрептомицина. Сообщают о положительных результатах комплексного применения экмолина со стрептомицином для лечения острой и хронической дизентерии и экмолина с пенициллином — для лечения и профилактики кокковых инфекций.

3. Фитонциды — вещества, выделяемые растениями. Открыты советским исследователем Б. П. Токиным в 1928 г. Эти вещества оказывают антимикробное действие на многих микроорганизмов, в том числе и на простейших. Наиболее активные фитонциды вырабатывают лук и чеснок. Если пожевать в течение нескольких минут лук, полость рта быстро очищается от микробов. Фитонциды применяют для местного лечения инфицированных ран. Антибиотики получили чрезвычайно широкое применение в медицинской практике и способствовали резкому уменьшению числа смертельных исходов при различных инфекционных заболеваниях (нагноительные процессы, менингиты, анаэробная инфекция, брюшной и сыпной тиф, туберкулез, детские инфекции и др.).

Однако следует указать и некоторое побочное и нежелательное их влияние.

При неправильном применении антибиотиков (маленькие дозы, кратковременное лечение) могут появиться устойчивые к данному антибиотику формы микробов-возбудителей. Вследствие этого для медицинской практики имеет большое значение определение чувствительности возбудителя инфекционного заболевания к тому или другому антибиотику.

Имеются 2 способа определения чувствительности выделяемых микробов к антибиотикам

1) метод серийных разведений

2) метод диффузии.

Первый метод более сложный и заключается в следующем: в ряд пробирок с 2 мл бульона наливают кратные разведения антибиотика, затем в каждую пробирку засевают 0,2 мл (выдержанной 18-ти часовой) бульонной культуры испытуемого микроба; пробирки помещают в термостат на 16—18 часов. Последняя пробирка, где отсутствует рост микробов, и определяет степень чувствительности микроба к данному антибиотику.

Более простым методом является метод диффузии . Для этой цели в лабораториях имеется набор специальных дисков из фильтровальной бумаги, пропитанных растворами разных антибиотиков. Делают посев выделенной культуры на чашку Петри, с мясопептонным агаром. Накладывают эти диски на засеянную поверхность.

Чашки помещают в термостат на 24—48 часов, после чего отмечают результат.

К другим осложнениям при применении антибиотиков относится снижение иммунологической реактивности. В этом случае иногда наступают рецидивы заболевания, например при брюшном тифе.

При слишком длительном приеме антибиотиков и в больших дозах часто наблюдаются токсические явления. У некоторых больных прием того или другого антибиотика вызывает аллергическую реакцию в виде высыпаний на коже, рвоты и т. д.

В отдельных случаях в результате длительного применения биомицина, левомицетина, синтомицина возможно угнетение нормальной микрофлоры человека, что ведет за собой активизацию условно патогенных микробов, обитающих на слизистых оболочках полости рта или кишечника: энтерококка, дрожжеподобных микроорганизмов и др. Эта флора в ослабленном организме может вызвать различного характера заболевания (кандидозы и др.). Все это свидетельствует о том, что медицинские работники должны применять антибиотики, строго руководствуясь существующими указаниями и инструкциями, наблюдая тщательно за состоянием больного, ив случае необходимости прекратить лечение его антибиотиками или заменить данный препарат другим.

Перечисленные осложнения не снижают ценности антибиотиков как лечебных препаратов. Благодаря антибиотикам медицинские работники в настоящее время имеют специфические лекарственные средства для лечения большинства инфекционных заболеваний.

Микроорганизмы есть везде, можно сказать - всегда. На данный момент подсчитано, что возраст Земли насчитывает около 4,6 миллиарда лет. Океаны появились около 4,4 миллиарда лет назад. Затем на Земле появились первые бактериальные клетки. Чтобы представить себе, как это долго - только в последние 500 миллионов лет развивалась жизнь в форме, напоминающей нынешние формы.

Таким образом, микроорганизмы составляют многочисленную группу организмов, без которых не обошлось открытие антибиотиков - и дальнейшее совершенствование их форм не было бы возможно. Открытие и введение этих веществ естественного происхождения для лечения инфекционных заболеваний человека, положило начало новой эпохе - спасения жизни и здоровья миллионов людей по всему миру.

История исследований

В научных исследованиях можно найти информацию о том, что микроорганизмы окружающей среды - имеют антибиотические свойства. Уже в древности интуитивно считалось, что существуют в природе вещества, которые помогают в лечении многих заболеваний, в частности инфекций. Есть также доказательства, что люди, еще тогда, пытались использовать антибиотики природного происхождения для лечения различных заболеваний. Следы тетрациклина - для примера, были найдены в останках костей человека в районе Нуби (исторической земли расположенной в настоящее время на территории южного Египта и северного Судана), датируется началом нашей эры (350 - 550).

Другим примером применения антибиотиков в древние времена, является утверждение их присутствия при анализе гистологических образцов, взятых из тела бедренной кости скелета времен Римской Империи, в Ливийской пустыне в Египте. В исследуемых образцах было выявлено наличие тетрациклина. Тот факт, что эти вещества попали в кости, доказывает, что в рационе древних цивилизаций находились вещества богатые на антибиотики природного происхождения. Есть также упоминания, что более 2000 лет назад заплесневелый хлеб в Китае, Греции, Сербии, Египте использовался для лечения некоторых патологических состояний, в частности, при плохо заживающих и инфицированных ранах. Тогда действия природных антибиотиков воспринимались как влияние духов или богов, ответственных за болезни и страдания.

В России существовали подобные применения. Медики давали больным пациентам пиво, смешанное с оболочками черепов и кожей змеи, а вавилонские врачи вылечили больному глаза, используя смесь желчи лягушки и кислого молока. В XVII веке, промывали раны смесью на базе пшеничного хлеба с плесенью. Однако научные размышления над специфическими свойствами микроорганизмов начались лишь в конце XIX века.

В 1870 году в Англии Сэр Джон Скотт Бурдон-Сандерсон начал наблюдения над свойствами плесени. Год спустя, Джозеф Листер экспериментировал с влиянием того, что он назвал Penicillium glaucium на ткани человека. Последовательно, в 1875 году Джон Тинделл пояснил антибактериальное действие гриба Penicillium на страницах Royal Society. Во Франции в 1877 году Луи Пастер провел тезис о том, что бактерии могут убивать другие бактерии. 20 лет спустя, в 1897 году Эрнест Дюшен, на защите диссертации "Антагонизм между плесенью и микроорганизмами", констатировал факт наличия веществ, которые могут привести к подавлению размножения некоторых патогенных бактерий. Дальнейшие исследования плесени и микробов были прерваны в связи со смертью, вызванной туберкулезом ученого.

В 1899 году Рудольф Эммерих и Оскар Лев описали в статье результаты своей работы с микроорганизмами. Они доказали, что бактерии, которые являются источниками одной болезни, могут быть выходом и лечением для другой болезни. Они вели примитивное исследование, применяя зараженные бактериями (Bacillus pyocyaneus - в настоящее время Pseudomonas aeruginosa) бинты. Образцы из этих используемых штаммов бактерий были в состоянии устранить другие штаммы. Из этих экспериментов Эммерих и Лев создали препарат, основанный на штаммах бактерий B. pyocyaneus, который назвали pyocyanase. Это был первый антибиотик для применения в больницах. К сожалению, его эффективность была низкой. Кроме того, наличие большого количества акридизина (вещество токсичное для человека), повлияло на факт прекращения применения данного препарата.

Изобретатель антибиотиков

Важной вехой и, одновременно, началом настоящей эры антибиотиков был 1928 год. Тогда изобретатель антибиотиков Александр Флеминг - шотландский бактериолог, исследователь (1922) - открыл белок со свойствами антисептика, после возвращения из отпуска, случайно обратил внимание на странные аномалии, которые произошли на чашке с колониями Золотистого стафилококка, предназначенной для утилизации. Его внимание привлекла голубая плесень (Penicillium notatum) и связанное с этим интересное наблюдение, что фрагмент на питательной среде колоний бактерий, рос в пространстве, что окружает мицелий, подвергаясь дезинтеграции. Тогда он начал разведение плесени, одновременно начал проводить исследования для того, чтобы использовать плесень в борьбе с патогенами. Исследования продолжались достаточно долго. Спустя 10 лет уже в 1939 году Говард Флори, Эрнст Чейн и Норман Хитл внедрили в производство пенициллин.

Сначала пенициллин производили на нескольких чашках, но со временем они внедрили масштабную промышленность данного вещества. Да, именно антибиотик под названием пенициллин вошел в клиническую практику в 1940 году. Пенициллин начали использовать во время боевых действий в Северной Африке, в 1943 году. Доступен он был в форме кальциевой соли (CaPn) в виде порошка, который представлял собой смесь CaPn и сульфонамиды. Применяли его для засыпки ран, в виде мазей, а также в чистом виде, предназначенном для приготовления растворов для промывания полостей тела и ран, а также в виде таблеток натриевой соли (NaPn), которые после преобразования в волокнистую солевую массу предназначались для инъекций. Вначале на фронт попадали ограниченные ресурсы данного антибиотика, кроме того, детально документировалось каждое его использование. Применяли его, в частности, для лечения газовой гангрены, тяжелых ран грудной клетки с повреждением внутренних органов, ран головы и сложных, открытых ран, при повреждениях суставов. Его использовали также для лечения тяжелых форм воспаления легких, менингита и септицемии - после предварительной проверки на чувствительность бактерий которые вызвали эти инфекции, к пенициллину. В более поздний период, когда на фронт попадало больше препарата, его использовали также для лечения гонореи.

Развитие и проведение дальнейших анализов

Еще один ученый, который навсегда вошел в историю как первооткрыватель антибиотиков, полученных из микроорганизмов - Сельман Ваксман. Это он первым употребил название "антибиотик" (anti - против и biotikos - жизненный) - химическое вещество, вырабатываемое бактериями, обладает способностью убивать или задерживать рост других микроорганизмов. Ваксман, еще, будучи студентом, систематически брал пробы грунта с территории своего учебного заведения и занимался наблюдением роста различных микроорганизмов. Во время своих долго продолжающихся исследований отметил возникновение колоний микробов, количество которых зависит от типа почвы, рн, глубины добычи и назначения грунта. Эти открытия повлияли на тот факт, что этот человек на постоянной основе занялся разведением грамм-положительных бактерий. Следствием долгих исследований Ваксмана, в дальнейшем стало открытие стрептомицина, его учеником - Альбертом Шатцом.

Он отметил, что Streptomyces griseus (S. griseus) производит связь активности в отношении грамотрицательных бактерий и микобактерий туберкулеза. Стрептомицин был самым важным открытием с момента открытия пенициллина. Благодаря этому началась эффективная борьба с туберкулезом. Открытия первых антибиотиков дало толчок для проведения дальнейших анализов и изготовления многих новых веществ. В связи с этим, период между 1950 и 1970 годом стал поистине «золотой эрой» открытий новых классов антибиотиков. Из числа многочисленных препаратов, в которых предшественниками были вещества, вырабатываемые микроорганизмами, следует отметить, в частности, те, что относятся к классам b-лактамов, аминогликозидов или тетрациклинов.

Заключение

Как видно из приведенных выше кратких сведений, микроорганизмы дали начало великим открытиям, но с момента введения массового производства антибиотиков, их применение в медицине и в других областях, к сожалению, показало сопротивление организма на несколько классов антибиотиков. Однако фактом является то, что в настоящее время это глобальная проблема и огромная опасность современной медицины.

Несмотря на большой прогресс, который наблюдается в области генетики, микробиологии или молекулярной биологии, еще нет достаточных знаний о механизмах, ответственных за устойчивость к антибиотикам. Не определенно, какие факторы отвечают за устойчивость к антибиотикам и не известно, какие барьеры ограничивают передачу таких генов другим видам микроорганизмов.

С того момента, когда Александр Флеминг открыл антибиотик, прошло почти 100 лет. Этот период можно назвать временем большого развития фармацевтической промышленности, богатого на новые лекарственные препараты для лечения многих болезней, которые совсем недавно считались неизлечимыми. Не было бы всего этого без маленьких микроорганизмов, которые стали великими союзниками человечества.

Большинство доступных сегодня препаратов было обнаружено во время так называемой «золотой эры» антибиотиков. Еще недавно казалось, что с концом этого периода возможности поиска новых бактерий прошли уже все возможные способы. Ничего более далекого от истины - в настоящее время уже известно, что существуют еще большие залежи непроверенных микроорганизмов. Есть много "фабрик", где возможно есть потенциал альтернативных веществ в терапии различных заболеваний. До сих пор продолжаются активные поиски новых мест обитания микроорганизмов, а также новых методов, способов и возможностей их привлечения и разведения. Подсчитано, что к настоящему времени удалось выделить и охарактеризовать только 1% всех антимикробных соединений, которые вырабатываются в природе, и только 10%, естественно, производимых антибиотиков.



Понравилась статья? Поделитесь ей
Наверх