Коэф преломления. Абсолютный показатель преломления и его связь с относительным показателем преломления

Есть ничто иное, как отношение синуса угла падения к синусу угла преломления

Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Величина n, при прочих равных условиях, обычно меньше единицы при переходе луча из среды более плотной в среду менее плотную, и больше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды).

В таблице приведены некоторые значения показателя преломления для некоторых сред:

Среда, обладающая большим показателем преломления, называется оптически более плотной. Обычно измеряется показатель преломления различных сред относительно воздуха. Абсолютный показатель преломления воздуха равен . Таким образом, абсолютный показатель преломления какой-либо среды связан с ее показателем преломления относительно воздуха формулой:

Показатель преломления зависит от длины волны света, то есть от его цвета. Различным цветам соответствуют различные показатели преломления. Это явление, называемое дисперсией, играет важную роль в оптике.

Эта статья раскрывает сущность такого понятия оптики, как показатель преломления. Приводятся формулы получения этой величины, дается краткий обзор применения явления преломления электромагнитной волны.

Способность видеть и показатель преломления

На заре зарождения цивилизации люди задавали вопросом: как видит глаз? Высказывались предположения, что человек испускает лучи, которые ощупывают окружающие предметы, или, наоборот, все вещи испускают такие лучи. Ответ на этот вопрос был дан в семнадцатом веке. Он содержится в оптике и связан с тем, что такое показатель преломления. Отражаясь от различных непрозрачных поверхностей и преломляясь на границе с прозрачными, свет дает человеку возможность видеть.

Свет и показатель преломления

Наша планета окутана светом Солнца. И именно с волновой природой фотонов связано такое понятие, как абсолютный показатель преломления. Распространяясь в вакууме, фотон не встречает препятствий. На планете свет встречает множество разных более плотных сред: атмосфера (смесь газов), вода, кристаллы. Будучи электромагнитной волной, фотоны света имеют в вакууме одну фазовую скорость (обозначается c ), а в среде - другую (обозначается v ). Соотношение первой и второй и является тем, что называют абсолютный показатель преломления. Формула выглядит так: n = c / v.

Фазовая скорость

Стоит дать определение фазовой скорости электромагнитной среды. Иначе понять, что такое показатель преломления n , нельзя. Фотон света - волна. Значит, его можно представить как пакет энергии, который колеблется (представьте отрезок синусоиды). Фаза - это тот отрезок синусоиды, который проходит волна в данный момент времени (напомним, что это важно для понимания такой величины, как показатель преломления).

Например, фазой может быть максимум синусоиды или какой-то отрезок ее склона. Фазовая скорость волны - это скорость, с которой движется конкретно эта фаза. Как поясняет определение показателя преломления, для вакуума и для среды эти величины различаются. Мало того, каждая среда обладает своим значением этой величины. Любое прозрачное соединение, каким бы ни был его состав, имеет показатель преломления, отличный от всех прочих веществ.

Абсолютный и относительный показатель преломления

Выше уже было показано, что абсолютная величина отсчитывается относительно вакуума. Однако с этим на нашей планете туго: свет чаще попадает на границу воздуха и воды или кварца и шпинели. Для каждой из этих сред, как уже было сказано выше, показатель преломления свой. В воздухе фотон света идет вдоль одного направления и имеет одну фазовую скорость (v 1), но, попадая в воду, меняет направление распространения и фазовую скорость (v 2). Однако оба эти направления лежат в одной плоскости. Это очень важно для понимания того, как формируется изображение окружающего мира на сетчатке глаза или на матрице фотоаппарата. Соотношение двух абсолютных величин дает относительный показатель преломления. Формула выглядит так: n 12 = v 1 / v 2 .

Но как же быть, если свет, наоборот, выходит из воды и попадает в воздух? Тогда эта величина будет определяться формулой n 21 = v 2 / v 1 . При перемножении относительных показателей преломления получаем n 21 * n 12 = (v 2 * v 1) / (v 1 * v 2) = 1. Это соотношение справедливо для любой пары сред. Относительный показатель преломления можно найти из синусов углов падения и преломления n 12 = sin Ɵ 1 / sin Ɵ 2 . Не стоит забывать, что углы отсчитывают от нормали к поверхности. Под нормалью подразумевается линия, перпендикулярная поверхности. То есть если в задаче дан угол α падения относительно самой поверхности, то надо считать синус от (90 - α).

Красота показателя преломления и его применение

В спокойный солнечный день на дне озера играют блики. Темно-синий лед покрывает скалу. На руке женщины бриллиант рассыпает тысячи искр. Эти явления - следствие того, что все границы прозрачных сред имеют относительный показатель преломления. Кроме эстетического наслаждения, это явление можно использовать и для практического применения.

Вот примеры:

  • Линза из стекла собирает пучок солнечного света и поджигает траву.
  • Лазерный луч фокусируется на больном органе и отрезает ненужную ткань.
  • Солнечный свет преломляется на древнем витраже, создавая особую атмосферу.
  • Микроскоп увеличивает изображение очень маленьких деталей
  • Линзы спектрофотометра собирают свет лазера, отраженный от поверхности изучаемого вещества. Таким образом, можно понять структуру, а потом и свойства новых материалов.
  • Существует даже проект фотонного компьютера, где передавать информацию будут не электроны, как сейчас, а фотоны. Для такого устройства однозначно потребуются преломляющие элементы.

Длина волны

Однако Солнце снабжает нас фотонами не только видимого спектра. Инфракрасные, ультрафиолетовые, рентгеновские диапазоны не воспринимаются человеческим зрением, но влияют на нашу жизнь. ИК-лучи согревают нас, УФ-фотоны ионизируют верхние слои атмосферы и дают возможность растениям с помощью фотосинтеза вырабатывать кислород.

И чему показатель преломления равен, зависит не только от веществ, между которыми пролегает граница, но и длине волны падающего излучения. О какой именно величине идет речь, обычно понятно из контекста. То есть если книга рассматривает рентген и его влияние на человека, то и n там определяется именно для этого диапазона. Но обычно подразумевается видимый спектр электромагнитных волн, если не указано нечто иное.

Показатель преломления и отражение

Как стало ясно из написанного выше, речь идет о прозрачных средах. В качестве примеров мы приводили воздух, воду, алмаз. Но как быть с деревом, гранитом, пластиком? Существует ли для них такое понятие, как показатель преломления? Ответ сложен, но в целом - да.

Прежде всего, следует учитывать, с каким именно светом мы имеем дело. Те среды, которые непрозрачны для видимых фотонов, прорезаются насквозь рентгеновским или гамма-излучением. То есть если бы мы все были суперменами, то весь мир вокруг был бы для нас прозрачен, но в разной степени. Например, стены из бетона были бы не плотнее желе, а металлическая арматура была бы похожа на кусочки более плотных фруктов.

Для других элементарных частиц, мюонов, наша планета вообще прозрачна насквозь. В свое время ученым доставило немало хлопот доказательство самого факта их существования. Мюоны миллионами пронзают нас каждую секунду, но вероятность столкновения хоть одной частицы с материей очень мала, и зафиксировать это очень сложно. Кстати, в скором времени Байкал станет местом «ловли» мюонов. Его глубокая и прозрачная вода подходит для этого идеально - особенно зимой. Главное, чтобы датчики не замерзли. Таким образом, показатель преломления бетона, например, для рентгеновских фотонов имеет смысл. Мало того, облучение вещества рентгеном - это один из наиболее точных и важных способов исследования строения кристаллов.

Также стоит помнить, что в математическом смысле непрозрачные для данного диапазона вещества обладают мнимым показателем преломления. И наконец, надо понимать, что температура вещества тоже может влиять на его прозрачность.

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.


Как сделать бумажный светильник своими руками
Как проверить работоспособность светодиодной ленты

Обратимся к более подробному рассмотрению показателя преломления, введенного нами в §81 при формулировке закона преломления.

Показатель преломления зависит от оптических свойств и той среды, из которой луч падает, и той среды, в которую он проникает. Показатель преломления, полученный в том случае, когда свет из вакуума падает на какую-либо среду, называется абсолютным показателем преломления данной среды.

Рис. 184. Относительный показатель преломления двух сред:

Пусть абсолютный показатель преломления первой среды есть а второй среды - . Рассматривая преломление на границе первой и второй сред, убедимся, что показатель преломления при переходе из первой среды во вторую, так называемый относительный показатель преломления, равен отношению абсолютных показателей преломления второй и первой сред:

(рис. 184). Наоборот, при переходе из второй среды в первую имеем относительный показатель преломления

Установленная связь между относительным показателем преломления двух сред и их абсолютными показателями преломления могла бы быть выведена и теоретическим путем, без новых опытов, подобно тому, как это можно сделать для закона обратимости (§82),

Среда, обладающая большим показателем преломления, называется оптически более плотной. Обычно измеряется показатель преломления различных сред относительно воздуха. Абсолютный показатель преломления воздуха равен . Таким образом, абсолютный показатель преломления какой-либо среды связан с ее показателем преломления относительно воздуха формулой

Таблица 6. Показатель преломления различных веществ относительно воздуха

Жидкости

Твердые вещества

Вещество

Вещество

Спирт этиловый

Сероуглерод

Глицерин

Стекло (легкий крон)

Жидкий водород

Стекло (тяжелый флинт)

Жидкий гелий

Показатель преломления зависит от длины волны света, т. е. от его цвета. Различным цветам соответствуют различные показатели преломления. Это явление, называемое дисперсией, играет важную роль в оптике. Мы неоднократно будем иметь дело с этим явлением в последующих главах. Данные, приведенные в табл. 6, относятся к желтому свету.

Интересно отметить, что закон отражения может быть формально записан в том же виде, что и закон преломления. Вспомним, что мы условились всегда измерять углы от перпендикуляра к соответствующему лучу. Следовательно, мы должны считать угол падения и угол отражения имеющими противоположные знаки, т.е. закон отражения можно записать в виде

Сравнивая (83.4) с законом преломления, мы видим, что закон отражения можно рассматривать как частный случай закона преломления при . Это формальное сходство законов отражения и преломления приносит большую пользу при решении практических задач.

В предыдущем изложении показатель преломления имел смысл константы среды, не зависящей от интенсивности проходящего через нее света. Такое истолкование показателя преломления вполне естественно, однако в случае больших интенсивностей излучения, достижимых при использовании современных лазеров, оно не оправдывается. Свойства среды, через которую проходит сильное световое излучение, в этом случае зависят от его интенсивности. Как говорят, среда становится нелинейной. Нелинейность среды проявляется, в частности, в том, что световая волна большой интенсивности изменяет показатель преломления. Зависимость показателя преломления от интенсивности излучения имеет вид

Здесь - обычный показатель преломления, а - нелинейный показатель преломления, - множитель пропорциональности. Добавочный член в этой формуле может быть как положительным, так и отрицательным.

Относительные изменения показателя преломления сравнительно невелики. При нелинейный показатель преломления . Однако даже такие небольшие изменения показателя преломления ощутимы: они проявляются в своеобразном явлении самофокусировки света.

Рассмотрим среду с положительным нелинейным показателем преломления. В этом случае области повышенной интенсивности света являются одновременной областями увеличенного показателя преломления. Обычно в реальном лазерном излучении распределение интенсивности по сечению пучка лучей неоднородно: интенсивность максимальна по оси и плавно спадает к краям пучка, как это показано на рис. 185 сплошными кривыми. Подобное распределение описывает также изменение показателя преломления по сечению кюветы с нелинейной средой, вдоль оси которой распространяется лазерный луч. Показатель преломления, наибольший по оси кюветы, плавно спадает к ее стенкам (штриховые кривые на рис. 185).

Пучок лучей, выходящий из лазера параллельно оси, попадая в среду с переменным показателем преломления , отклоняется в ту сторону, где больше. Поэтому повышенная интенсивность вблизи осп кюветы приводит к концентрации световых лучей в этой области, показанной схематически в сечениях и на рис. 185, а это приводит к дальнейшему возрастанию . В конечном итоге эффективное сечение светового пучка, проходящего через нелинейную среду, существенно уменьшается. Свет проходит как бы по узкому каналу с повышенным показателем преломления. Таким образом, лазерный пучок лучей сужается, нелинейная среда под действием интенсивного излучения действует как собирающая линза. Это явление носит название самофокусировки. Его можно наблюдать, например, в жидком нитробензоле.

Рис. 185. Распределение интенсивности излучения и показателя преломления по сечению лазерного пучка лучей на входе в кювету (а), вблизи входного торца (), в середине (), вблизи выходного торца кюветы ()

Лабораторная работа

Преломление света. Измерение показателя преломления жидкости

с помощью рефрактометра

Цель работы : углубление представлений о явлении преломления света; изучение методики измерения показателя преломления жидких сред; изучение принципа работы с рефрактометром.

Оборудование : рефрактометр, растворы поваренной соли, пипетка, мягкая ткань для протирания оптических деталей приборов.

Теория

Законы отражения и преломления света. Показатель преломления.

На границе раздела сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т.е. происходит отражение света. Если вторая среда прозрачна, то часть света при определенных условиях проходит через границу раздела сред, меняя при этом, как правило, направление распространения. Это явление называется преломлением света (рис. 1).

Рис. 1. Отражение и преломление света на плоской границе раздела двух сред.

Направление отраженного и преломленного лучей при прохождении света через плоскую границу раздела двух прозрачных сред определяются законами отражения и преломления света.

Закон отражения света. Отраженный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной к плоскости раздела сред в точке падения. Угол падения равен углу отражения
.

Закон преломления света. Преломленный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной к плоскости раздела сред в точке падения. Отношение синуса угла паденияα к синусу угла преломленияβ есть величина постоянная для данных двух сред, называемая относительным показателем преломления второй среды по отношению к первой:

Относительный показатель преломления двух сред равен отношению скорости распространения света в первой средеv 1 к скорости света во второй средеv 2:

Если свет идет из вакуума в среду, то показатель преломления среды относительно вакуума называется абсолютным показателем преломления этой среды и равен отношению скорости света в вакууме с к скорости света в данной средеv:

Абсолютные показатели преломления всегда больше единицы; для воздуха n принят за единицу.

Относительный показатель преломления двух сред можно выразить через их абсолютные показатели n 1 иn 2 :

Определение показателя преломления жидкости

Для быстрого и удобного определения показателя преломления жидкостей существует специальные оптические приборы – рефрактометры, основной частью которых являются две призмы (рис. 2): вспомогательная Пр. 1 и измерительнаяПр.2. В зазор между призмами наливается исследуемая жидкость.

При измерениях показателей могут быть использованы два метода: метод скользящего луча (для прозрачных жидкостей) и метод полного внутреннего отражения (для темных, мутных и окрашенные растворов). В данной работе используется первый из них.

В методе скользящего луча свет от внешнего источника проходит сквозь грань призмы Пр.1, рассеивается на ее матовой поверхностиАС и далее через слой исследуемой жидкости проникает в призмуПр.2. Матовая поверхность становится источником лучей всех направлений, поэтому она может наблюдаться сквозь граньЕ F призмыПр.2. Однако граньАС можно наблюдать сквозьЕ F только под углом, большим некоторого предельного минимального углаi . Величина этого угла однозначно связана с показателем преломления жидкости, находящейся между призмами, что и случит основной идеей конструкции рефрактометра.

Рассмотрим прохождение света через грань ЕF нижней измерительной призмыПр.2. Как видно из рис. 2, применяя дважды закон преломления света, можно получить два соотношения:

(1)

(2)

Решая эту систему уравнений, нетрудно прийти к выводу, что показатель преломления жидкости

(3)

зависит от четырех величин: Q , r , r 1 и i . Однако не все они независимы. Так, например,

r + s = R , (4)

где R - преломляющий угол призмы Пр.2 . Кроме того, задав углу Q максимальное значение 90°, из уравнения (1) получим:

(5)

Но максимальному значению угла r , как это видно из рис. 2 и соотношений (3) и (4), соответствуют минимальные значения углов i и r 1 , т.е. i min и r min .

Таким образом, показатель преломления жидкости для случая «скользящих» лучей связан только с углом i . При этом существует минимальное значение угла i , когда грань АС еще наблюдается, т. е. в поле зрения она кажется зеркально белой. Для меньших углов наблюдения грань не видна, и в поле зрения это место кажется черным. Поскольку зрительная труба прибора захватывает сравнительно широкую угловую зону, то в поле зрения одновременно наблюдаются светлый и черный участки, граница между которыми соответствует минимальному углу наблюдения и однозначно связана с показателем преломления жидкости. Используя окончательную расчетную формулу:

(ее вывод опущен) и ряд жидкостей с известными показателями преломления, можно проградуировать прибор, т. е. установить однозначное соответствие между показателями преломления жидкостей и углами i min . Все приведенные формулы выведены для лучей одной какой-либо длины волны.

Свет различных длин волн будет преломляться с учетом дисперсии призмы. Таким образом, при освещении призмы белым светом граница раздела будет размыта и окрашена в различные цвета вследствие дисперсии. Поэтому в каждом рефрактометре есть компенсатор, который позволяет устранить результат дисперсии. Он может состоятьиз одной или двух призм прямого зрения - призм Амичи. Каждая призма Амичи состоит из трех стеклянных призм с различными показателями преломления и различной дисперсией, например, крайние призмы изготовлены из кронгласа, а средняя - из флинтгласа (кронглас и флинтглас - сорта стекол). Поворотом призмы компенсатора с помощью специального устройства добиваются резкого без окраски изображения границы раздела, положение которой соответствует значению показателя преломления для желтой линии натрияλ =5893 Å (призмы рассчитаны так, чтобы лучи с длиной волны 5893 Å не испытывали вних отклонения).

Лучи, прошедшие компенсатор, попадают в объектив зрительной трубы, далее через обращающую призму проходят через окуляр зрительной трубы в глаз наблюдателя. Схематический ход лучей показан на рис. 3.

Шкала рефрактометра отградуирована в значениях показателя преломления и концентрации раствора сахарозы в воде и расположена в фокальной плоскости окуляра.

Экспериментальная часть

Задание 1. Проверка рефрактометра.

Направьте свет с помощью зеркала на вспомогательную призму рефрактометра. Подняв вспомогательную призму, пипеткой нанесите несколько капель дистиллированной воды на измерительную призму. Опустив вспомогательную призму, добейтесь наилучшей осве­щенности поля зрения и установите окуляр на отчетливую видимость перекрестия и шкалы показателей преломления. Поворачивая камеру измерительной призмы, получите в поле зрения границу света и тени. Вращая головку компенсатора, добейтесь устранения окраски границы света и тени. Совместите границу света и тени с точкой перекрестия и измерьте показатель преломления воды n изм . Если рефрактометр исправен, то для дистиллированной воды должно получиться значениеn 0 = 1,333, если показания отличаются от этого значения, нужно определить поправку Δn = n изм - 1,333, которую затем следует учитывать при дальнейшей работе с рефрактометром. Поправки внесите в таблицу 1.

Таблица 1.

n 0

n изм

Δ n

Н 2 О

Задание 2. Определение показателя преломления жидкости.

    Определите показатели преломления растворов известных концентраций с учетом найденной поправки.

Таблица 2.

С, об. %

n изм

n ист

    Постройте график зависимости показателя преломления растворов поваренной соли от концентрации по полученным результатам. Сделайте вывод о ходе зависимости n от С; сделайте выводы о точности измерений на рефрактометре.

    Возьмите раствор соли неизвестной концентрации С x , определите его показатель преломления и по графику найдите концентрацию раствора.

    Уберите рабочее место, осторожно протрите призмы рефрактометров влажной чистой тряпочкой.

Контрольные вопросы

    Отражение и преломление света.

    Абсолютный и относительный показатели преломления среды.

    Принцип работы рефрактометра. Метод скользящего луча.

    Схематический ход лучей в призме. Для чего необходимы призмы компенсатора?

Распространение, отражение и преломление света

Природа света – электромагнитная. Одним из доказательств этого является совпадение величин скоростей электромагнитных волн и света в вакууме.

В однородной среде свет распространяется прямолинейно. Это утверждение называется законом прямолинейного распространения света. Опытным доказательством этого закона служат резкие тени, даваемые точечными источниками света.

Геометрическую линию, указывающую направление распространения света, называют световым лучом. В изотропной среде световые лучи направлены перпендикулярно волновому фронту.

Геометрическое место точек среды, колеблющихся в одинаковой фазе, называют волновой поверхностью, а множество точек, до которых дошло колебание к данному моменту времени, – фронтом волны. В зависимости от вида фронта волны различают плоские и сферические волны.

Для объяснения процесса распространения света используют общий принцип волновой теории о перемещении фронта волны в пространстве, предложенный голландским физиком Х.Гюйгенсом. Согласно принципу Гюйгенса каждая точка среды, до которой доходит световое возбуждение, является центром сферических вторичных волн, распространяющихся также со скоростью света. Поверхность, огибающая фронты этих вторичных волн, дает положение фронта действительно распространяющейся волны в этот момент времени.

Необходимо различать световые пучки и световые лучи. Световой пучок – это часть световой волны, переносящей световую энергию в заданном направлении. При замене светового пучка описывающим его световым лучом последний нужно брать совпадающим с осью достаточно узкого, но имеющего при этом конечную ширину (размеры поперечного сечения значительно больше длины волны), светового пучка.

Различают расходящиеся, сходящиеся и квазипараллельные световые пучки. Часто употребляют термины пучок световых лучей или просто световые лучи, понимая под этим совокупность световых лучей, описывающих реальный световой пучок.

Скорость света в вакууме c = 3 108 м/с является универсальной константой и не зависит от частоты. Впервые экспериментально скорость света была определена астрономическим методом датским ученым О.Рёмером. Более точно скорость света измерил А.Майкельсон.

В веществе скорость света меньше, чем в вакууме. Отношение скорости света в вакууме к его скорости в данной среде называют абсолютным показателем преломления среды:

где с – скорость света в вакууме, v – скорость света в данной среде. Абсолютные показатели преломления всех веществ больше единицы.

При распространении света в среде он поглощается и рассеивается, а на границе раздела сред – отражается и преломляется.

Закон отражения света: луч падающий, луч отраженный и перпендикуляр к границе раздела двух сред, восставленный в точке падения луча, лежат в одной плоскости; угол отражения g равен углу падения a (рис. 1). Этот закон совпадает с законом отражения для волн любой природы и может быть получен как следствие принципа Гюйгенса.

Закон преломления света: падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восставленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления для данной частоты света есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой:

Экспериментально установленный закон преломления света объясняется на основании принципа Гюйгенса. Согласно волновым представлениям преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую, а физический смысл относительного показателя преломления – это отношение скорости распространения волн в первой среде v1 к скорости их распространения во второй среде

Для сред с абсолютными показателями преломления n1 и n2 относительный показатель преломления второй среды относительно первой равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой среды:

Та среда, которая обладает большим показателем преломления, называется оптически более плотной, скорость распространения света в ней меньше. Если свет переходит из оптически более плотной среды в оптически менее плотную, то при некотором угле падения a0 угол преломления должен стать равным p/2. Интенсивность преломленного луча в этом случае становится равной нулю. Свет, падающий на границу раздела двух сред, полностью отражается от нее.

Угол падения a0, при котором наступает полное внутреннее отражение света, называется предельным углом полного внутреннего отражения. При всех углах падения, равных и больших a0, происходит полное отражение света.

Величина предельного угла находится из соотношения Если n2 = 1 (вакуум), то

2 Показа́тель преломле́ния вещества - величина, равная отношению фазовых скоростей света (электромагнитных волн) в вакууме и в данной среде. Также о показателе преломления говорят для любых других волн, например, звуковых

Показатель преломления зависит от свойств вещества и длины волны излучения, для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Существуют оптически анизотропные вещества, в которых показатель преломления зависит от направления и поляризации света. Такие вещества достаточно распространены, в частности, это все кристаллы с достаточно низкой симметрией кристаллической решётки, а также вещества, подвергнутые механической деформации.

Показатель преломления можно выразить как корень из произведения магнитной и диэлектрических проницаемостей среды

(надо при этом учитывать, что значения магнитной проницаемости и показателя абсолютной диэлектрической проницаемости для интересующего диапазона частот - например, оптического, могут очень сильно отличаться от статического значения этих величин).

Для измерения коэффициента преломления используют ручные и автоматические рефрактометры. При использовании рефрактометра для определения концентрации сахара в водном растворе прибор называют сахариметр.

Отношение синуса угла падения () луча к синусу угла преломления () при переходе луча из среды Aв средуBназывается относительным показателем преломления для этой пары сред.

Величина nесть относительный показатель преломления среды В по отношению к среде А, аn" = 1/nесть относительный показатель преломления среды А по отношению к среде В.

Эта величина, при прочих равных условиях, обычно меньше единицы при переходе луча из среды более плотной в среду менее плотную, и больше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды).

Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды В, преломляется сильнее, чем при падении на неё из другой среды А; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления или просто показателем преломления данной среды, это и есть показатель преломления, определение которого дано в начале статьи. Показатель преломления любого газа, в том числе воздуха, при обычных условиях много меньше, чем показатели преломления жидкостей или твердых тел, поэтому приближенно (и со сравнительно неплохой точностью) об абсолютном показателе преломления можно судить по показателю преломления относительно воздуха.

Рис. 3. Принцип действия интерференционного рефрактометра. Луч света разделяют так, чтобы две его части прошли через кюветы длиной l, заполненные веществами с различными показателями преломления. На выходе из кювет лучи приобретают определённую разность хода и, будучи сведены вместе, дают на экране картину интерференционных максимумов и минимумов сkпорядками (схематически показана справа). Разность показателей преломленияDn=n2 –n1 =kl/2, гдеl- длина волны света.

Рефрактометрами называются приборы, служащие для измерения показателя преломления веществ. Принцип действия рефрактометра основан на явлении полного отражения. Если на границу раздела двух сред с показателями преломления и, из среды более оптически плотной падает рассеянный пучок света, то начиная с некоторого угла падения, лучи не входят во вторую среду, а полностью отражаются от границы раздела в первой среде. Этот угол называется предельным углом полного отражения. На рис.1 показано поведение лучей при падении в некоторую току этой поверхности. Луч идет под предельным углом. Из закона преломления можно определить: , (поскольку).

Величина предельного угла зависит от относительного показателя преломления двух сред. Если лучи, отраженные от поверхности, направить на собирающую линзу то в фокальной плоскости линзы можно видеть границу света и полутени, причем, положение этой границы зависит от величины предельного угла, а следовательно, и от показателя преломления. Изменение показателя преломления одной из сред влечет за собой изменение положения границы раздела. Граница раздела света и тени может служить индикатором при определении показателя преломления, что и используется в рефрактометрах. Этот метод определения показателя преломления называется методом полного отражения

Помимо метода полного отражения в рефрактометрах используется метод скользящего луча. В этом методе рассеянный пучок света попадает на границу из среды менее оптически плотной под всевозможными углами (рис. 2). Лучу скользящему по поверхности (), соответствует -- предельный угол преломления (луч на рис.2). Если на пути лучей (), преломленных на поверхности, поставить линзу, то в фокальной плоскости линзы мы также увидим резкую границу света и тени.

Рис. 2

Так как условия, определяющие величину предельного угла, в обоих методах одинаковы, то и положение границы раздела совпадает. Оба метода равноценны, но метод полного отражения позволяет измерять показателя преломления непрозрачных веществ

Ход лучей в треугольной призме

На рисунке 9 изображено сечение стеклянной призмы плоскостью,перпендикулярной ее боковым ребрам. Луч в призме отклоняется к основанию, преломляясь на гранях ОА и 0В. Угол jмежду этими гранями называют преломляющим углом призмы. Уголqотклонения луча зависит от преломляющего угла призмыj, показателя преломления п материала призмы и угла паденияa. Он может быть вычислен с помощью закона преломления (1.4).

В рефрактометре используется источник 3 белого света. Вследствие дисперсии при прохождении светом призм 1 и 2 граница света и тени оказывается окрашенной. Во избежание этого перед объективом зрительной трубы помещают компенсатор 4. Он состоит из двух одинаковых призм, каждая из которых склеена из трех призм, обладающих различным показателем преломления. Призмы подбирают так, чтобы монохроматический луч с длиной волны = 589,3 мкм. (длина волны желтой линии натрия) не испытывал после прохождения компенсатора отклонения. Лучи с другими длинами волн отклоняются призмами в различных направлениях. Перемещая призмы компенсатора с помощью специальной рукоятки, добиваются того, чтобы граница света и темноты стала возможно более чёткой.

Лучи света, пройдя компенсатор, попадают в объектив 6 зрительной трубы. Изображение границы раздела свет – тень рассматривается в окуляр 7 зрительной трубы. Одновременно в окуляр рассматривается шкала 8. Так как предельный угол преломления и предельный угол полного отражения зависят от показателя преломления жидкости, то на шкале рефрактометра сразу нанесены значения этого показателя преломления.

Оптическая система рефрактометра содержит также поворотную призму 5. Она позволяет расположить ось зрительной трубы перпендикулярно призмам 1 и 2, что делает наблюдение более удобным.



Понравилась статья? Поделитесь ей
Наверх