Мат ожидание дисперсия случайной величины. Математическое ожидание. Свойства математического ожидания случайной величины

Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме.

К таким величинам относят в первую очередь математическое ожидание и дисперсия .

Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как .

Самым простым способом математическое ожидание случайной величины Х(w) , находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве

Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей Р Х величины X :

где - множество всех возможных значений X .

Математическое ожидание функций от случайной величины X находится через распределение Р Х . Например , если X - случайная величина со значениями в и f(x) - однозначная борелевская функция Х , то:

Если F(x) - функция распределения X , то математическое ожидание представимо интегралом Лебега - Стилтьеса (или Римана - Стилтьеса):

при этом интегрируемость X в смысле (* ) соответствует конечности интеграла

В конкретных случаях, если X имеет дискретное распределение с вероятными значениями х k , k=1, 2 , . , и вероятностями , то

если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х) , то

при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла.

Свойства математического ожидания случайной величины.

  • Математическое ожидание постоянной величины равно этой величине:

C - постоянная;

  • M=C.M[X]
  • Математическое ожидание суммы случайно взятых величин равно сумме их математических ожиданий:

  • Математическое ожидание произведения независимых случайно взятых величин = произведению их математических ожиданий:

M=M[X]+M[Y]

если X и Y независимы.

если сходится ряд:

Алгоритм вычисления математического ожидания.

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность.

1. По очереди перемножаем пары: x i на p i .

2. Складываем произведение каждой пары x i p i .

Напрмер , для n = 4 :

Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак.

Пример: Найти математическое ожидание по формуле.

Как уже известно, закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно; такие числа называют числовыми характеристиками случайной величины. К числу важных числовых характеристик относится математическое ожидание.

Математическое ожидание, как будет показано далее, приближенно равно среднему значению случайной величины. Для решения многих задач достаточно знать математическое ожидание. Например, если известно, что математическое ожидание числа выбиваемых очков у первого стрелка больше, чем у второго, то первый стрелок в среднем выбивает больше очков, чем второй, и, следовательно, стреляет лучше второго. Хотя математическое ожидание дает о случайной величине значительно меньше сведений, чем закон ее распределения, но для решения задач, подобных приведенной и многих других, знание математического ожидания оказывается достаточным.

§ 2. Математическое ожидание дискретной случайной величины

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина X может принимать только значения х 1 , х 2 , ..., х п , вероятности которых соответственно равны р 1 , р 2 , . . ., р п . Тогда математическое ожидание М (X ) случайной величины X определяется равенством

М (X ) = х 1 р 1 + х 2 р 2 + … + x n p n .

Если дискретная случайная величина X принимает счетное множество возможных значений, то

М (Х )=

причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Замечание. Из определения следует, что математическое ожидание дискретной случайной величины есть неслучайная (постоянная) величина. Рекомендуем запомнить это утверждение, так как далее оно используется многократно. В дальнейшем будет показано, что математическое ожидание непрерывной случайной величины также есть постоянная величина.

Пример 1. Найти математическое ожидание случайной величины X , зная закон ее распределения:

Решение. Искомое математическое ожидание равно сумме произведений всех возможных значений случайной величины на их вероятности:

M (X )= 3* 0, 1+ 5* 0, 6+ 2* 0, 3= 3, 9.

Пример 2. Найти математическое ожидание числа появлений события А в одном испытании, если вероятность события А равна р.

Решение. Случайная величина X - число появлений события А в одном испытании - может принимать только два значения: х 1 = 1 (событие А наступило) с вероятностью р и х 2 = 0 (событие А не наступило) с вероятностью q = 1 -р. Искомое математическое ожидание

M (X )= 1* p + 0* q = p

Итак, математическое ожидание числа появлений события в одном испытании равно вероятности этого события. Этот результат будет использован ниже.

§ 3. Вероятностный смысл математического ожидания

Пусть произведено п испытаний, в которых случайная величина X приняла т 1 раз значение х 1 , т 2 раз значение х 2 ,...,m k раз значение x k , причем т 1 + т 2 + …+т к = п. Тогда сумма всех значений, принятых X , равна

х 1 т 1 + х 2 т 2 + ... + х к т к .

Найдем среднее арифметическое всех значений, принятых, случайной величиной, для чего разделим найденную сумму на общее число испытаний:

= (х 1 т 1 + х 2 т 2 + ... + х к т к )/п,

= х 1 (m 1 / n ) + х 2 (m 2 / n ) + ... + х к (т к /п ). (*)

Заметив, что отношение m 1 / n - относительная частота W 1 значения х 1 , m 2 / n - относительная частота W 2 значения х 2 и т. д., запишем соотношение (*) так:

= х 1 W 1 + x 2 W 2 + .. . + х к W k . (**)

Допустим, что число испытаний достаточно велико. Тогда относительная частота приближенно равна вероятности появления события (это будет доказано в гл. IX, § 6):

W 1 p 1 , W 2 p 2 , …, W k p k .

Заменив в соотношении (**) относительные частоты соответствующими вероятностями, получим

x 1 p 1 + х 2 р 2 + … + х к р к .

Правая часть этого приближенного равенства есть М (X ). Итак,

М (X ).

Вероятностный смысл полученного результата таков: математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Замечание 1. Легко сообразить, что математическое ожидание больше наименьшего и меньше наибольшего возможных значений. Другими словами, на числовой оси возможные значения расположены слева и справа от математического ожидания. В этом смысле математическое ожидание характеризует расположение распределения и поэтому его часто называют центром распределения.

Этот термин заимствован из механики: если массы р 1 , р 2 , ..., р п расположены в точках с абсциссами x 1 , х 2 , ..., х n , причем
то абсцисса центра тяжести

x c =
.

Учитывая, что
=
M (X ) и
получим М (Х ) = х с .

Итак, математическое ожидание есть абсцисса центра тяжести системы материальных точек, абсциссы которых равны возможным значениям случайной величины, а массы - их вероятностям.

Замечание 2. Происхождение термина «математическое ожидание» связано с начальным периодом возникновения теории вероятностей (XVI - XVII вв.), когда область ее применения ограничивалась азартными играми. Игрока интересовало среднее значение ожидаемого выигрыша, или, иными словами, математическое ожидание выигрыша.

1. Математическое ожидание постоянной величины равно самой постоянной М(С)=С .
2. Постоянный множитель можно выносить за знак математического ожидания: M(CX)=CM(X)
3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий: M(XY)=M(X) M(Y).
4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых: M(X+Y)=M(X)+M(Y).

Теорема. Математическое ожидание М(х) числа появлений событий А в n независимых испытаниях равно произведению этих испытаний на вероятность появления событий в каждом испытании: M(x) = np.

Пусть Х - случайная величина и М(Х) – ее математическое ожидание. Рассмотрим в качестве новой случайной величины разность Х - М(Х).

Отклонением называют разность между случайной величиной и ее математическим ожиданием.

Отклонение имеет следующий закон распределения:

Решение: Найдем математическое ожидание:
2 =(1-2.3) 2 =1.69
2 =(2-2.3) 2 =0.09
2 =(5-2.3) 2 =7.29

Напишем закон распределения квадрата отклонения:

Решение: Найдем математическое ожидание М(х): M(x)=2 0.1+3 0.6+5 0.3=3.5

Напишем закон распределения случайной величины X 2

X 2
P 0.1 0.6 0.3

Найдем математическое ожидание M(x 2):M(x 2) = 4 0.1+9 0.6+25 0.3=13.5

Искомая дисперсия D(x)=M(x 2)- 2 =13.3-(3.5) 2 =1.05

Свойства дисперсии:

1. Дисперсия постоянной величины С равна нулю: D(C)=0
2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. D(Cx)=C 2 D(x)
3. Дисперсия суммы независимых случайных величин равна сумме дисперсий этих величин. D(X 1 +X 2 +...+X n)=D(X 1)+D(X 2)+...+D(X n)
4. Дисперсия биномиального распределения равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании D(X)=npq

Для оценки рассеяния возможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относится среднее квадратичное отклонение.

Средним квадратичным отклонением случайной величины Х называют квадратный корень из дисперсии:

σ(X) = √D(X) (4)

Пример. Случайная величина Х задана законом распределения

X
P 0.1 0.4 0.5

Найти среднее квадратичное отклонение σ(x)

Решение: Найдем математическое ожидание Х: M(x)=2 0.1+3 0.4+10 0.5=6.4
Найдем математическое ожидание X 2: M(x 2)=2 2 0.1+3 2 0.4+10 2 0.5=54
Найдем дисперсию: D(x)=M(x 2)=M(x 2)- 2 =54-6.4 2 =13.04
Искомое среднее квадратичное отклонение σ(X)=√D(X)=√13.04≈3.61

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратичных отклонений этих величин:

Пример. На полке из 6 книг 3 книги по математике и 3 по физике. Выбирают наудачу три книги. Найти закон распределения числа книг по математике среди выбранных книг. Найти математическое ожидание и дисперсию этой случайной величины.

К числовым характеристикам с.в. относятся: математическое ожидание, дисперсия, моменты различных порядков и т.д.

  1. Математическое ожидание.

Пусть – дискретная с.в., принимающая значения
с вероятностями
соответственно.

Математическим ожиданием (м.о.) или средним значением с.в.
называется число

(1.1)

в предположении, что этот ряд сходится абсолютно.

Если же ряд
расходится, то говорят, что с.в.
не имеет конечного м.о.

Если

, то её м.о. определяется интегралом

(1.2)

при условии, что он сходится абсолютно.

Пусть
– дискретная с.в. с законом распределения (2.1) (Тема: Скалярные случайные величины), а
– функция этой с.в. Тогда закон распределения с.в.
имеет вид табл. 7.1 (Тема: Скалярные случайные величины). Согласно равенству (1.1), м.о. случайной величины
определяется формулой

.

Если же
– непрерывная с.в. с плотностью вероятности
, то, обобщая предыдущие рассуждения, получаем формулу для м.о. случайной величины
в виде

. (1.3)

Пример 1.1. В денежной лотерее выпущено 200 билетов. Разыгрывается один выигрыш в размере 50 руб., два – по 25 руб., десять – по 1 руб. Найти среднюю величину выигрыша, если куплен один билет.

D Согласно примеру 2.1 (Тема: Скалярные случайные величины), закон распределения с.в.
– выигрыша – имеет вид (2.2) (Тема: Скалярные случайные величины).

По формуле (1.1) средняя величина выигрыша

Итак, средний выигрыш в лотерее равен 55 коп. ▲

Пример 1.2. Плотность распределения вероятностей с.в.
имеет вид

Найти
.

D По формуле (1.3)
. ▲

Выясним основные свойства математического ожидания.

1 0 . М.о. числа появлений события в одном испытании равно вероятности этого события.

2 0 . М.о. постоянной неслучайной величины равно .

3 0 . Постоянный неслучайный множитель можно выносить за знак математического ожидания.

4 0 . Для любых случайных величин (зависимых или независимых) м.о. суммы с.в.
и равно сумме м.о. этих величин:

5 0 . Для независимых случайных величин м.о. произведения с.в.
и равно произведению м.о. этих с.в., т.е.

Пример 1.3. Найти м.о. суммы числа очков, которые могут выпасть при бросании двух игральных костей.

D Пусть
и – число выпавших очков на первой и второй кости соответственно. Дискретные с.в.
и принимают значения 1, 2, 3, 4, 5 и 6 с одинаковой вероятностью
. Тогда по формулам (1.4) и (1.1) искомое м.о.

  1. Дисперсия.

М.о. характеризует среднее значение с.в. Отклонением с.в.
от своего математического ожидания (среднего значения) называется с.в.
. Часто величина
называется центрированной с.в.

Дисперсией или рассеянием
случайной величины
называется математическое ожидание квадрата отклонения случайной величины
от её математического ожидания:

Корень квадратный из дисперсии называется средним квадратическим (квадратичным ) отклонением с.в.
и обозначается
, так что
.

Для дискретной с.в.
, принимающей значения с вероятностью ,
, дисперсия определяется равенством

, (2.2)

где
.

Для непрерывной с.в.
дисперсия определяется равенством

, (2.3)

если этот интеграл существует. Здесь
– плотность вероятности с.в.
.

Из свойств м.о. и определения дисперсии имеем

Итак, для дискретной с.в.

. (2.4)

Для непрерывной с.в.
равенство (2.4) имеет вид

. (2.5)

Формулы (2.4) и (2.5) более удобны для вычисления дисперсии.

Замечание . Из определения дисперсии (2.1) с.в.
следует, что
. Если дисперсия мала, то каждый член суммы (2.2) тоже мал. Следовательно, значение , при котором
велико, должно иметь малую вероятность. Другими словами, при малой дисперсии большие отклонения с.в.
от её м.о. маловероятны. Равенство
означает, что
для тех значений , вероятность которых равна нулю. Иначе говоря,
означает, что
с вероятностью, равной единице.

Пример 2.1. Найти дисперсию с.в.
, заданной законом распределения вероятностей

D Находим м.о.: . Так как закон распределения с.в.
имеет вид

то , и по формуле (2.4)

. ▲

Пример 2.2. Найти дисперсию с.в.
, функция распределения которой

D Находим плотность вероятности

По формуле (2.5) искомая дисперсия

. ▲

Установим свойства дисперсии.

1 0 . Дисперсия постоянной неслучайной величины равна нулю.

Действительно, .

2 0 . Постоянный неслучайный множитель можно выносить за знак дисперсии, возводя его в квадрат:
.

В самом деле,

3 0 . Дисперсия суммы или разности независимых с.в.
и равна сумме дисперсий этих величин: .

D Так как
и независимые с.в., то и, следовательно,

.

Итак, . Отсюда и из свойства 2 0 дисперсии получим

Как уже известно, закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно; такие числа называют числовыми характеристиками случайной величины .

К числу важных числовых характеристик относится математическое ожидание.

Математическое ожидание приближенно равно среднему значению случайной величины.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Если случайная величина характеризуется конечным рядом распределения:

Х х 1 х 2 х 3 х п
Р р 1 р 2 р 3 р п

то математическое ожидание М(Х) определяется по формуле:

Математическое ожидание непрерывной случайной величины определяется равенством:

где – плотность вероятности случайной величины Х .

Пример 4.7. Найти математическое ожидание числа очков, выпадающих при бросании игральной кости.

Решение:

Случайная величина Х принимает значения 1, 2, 3, 4, 5, 6. Составим закон ее распределения:

Х
Р

Тогда математическое ожидание равно:

Свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной:

М (С) = С.

2. Постоянный множитель можно выносить за знак математического ожидания:

М (СХ) = СМ (X).

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X)M(Y).

Пример 4.8 . Независимые случайные величины X и Y заданы следующими законами распределения:

Х Y
Р 0,6 0,1 0,3 Р 0,8 0,2

Найти математическое ожидание случайной величины XY.

Решение .

Найдем математические ожидания каждой из данных величин:

Случайные величины X и Y независимые, поэтому искомое математическое ожидание:

M(XY) = M(X)M(Y)=

Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

М (X + Y) = М (X) + М (Y).

Следствие. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Пример 4.9. Производится 3 выстрела с вероятностями попадания в цель, равными р 1 = 0,4; p 2 = 0,3 и р 3 = 0,6. Найти математическое ожидание общего числа попаданий.

Решение.

Число попаданий при первом выстреле есть случайная величина Х 1 , которая может принимать только два значения: 1 (попадание) с вероятностью р 1 = 0,4 и 0 (промах) с вероятностью q 1 = 1 – 0,4 = 0,6.

Математическое ожидание числа попаданий при первом выстреле равно вероятности попадания:

Аналогично найдем математические ожидания числа попаданий при втором и третьем выстрелах:

М(Х 2) = 0,3 и М(Х 3)= 0,6.

Общее число попаданий есть также случайная величина, состоящая из суммы попаданий в каждом из трех выстрелов:

Х = Х 1 + Х 2 + Х 3 .

Искомое математическое ожидание Х находим по теореме о математическом, ожидании суммы:

М(X) = M(X l + X 2 + X 3) = M(X 1) + M(X 2) + M (X 3) = 0,4 + 0,3 + 0,6 = 1,3 (попаданий).



Понравилась статья? Поделитесь ей
Наверх