Определение качества воды методом биотестирования. Методы биотестирования природных и сточных вод

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

«Я утверждаю, что все рождающееся от земли живет за счет земной влаги,

и в каком состоянии находится эта влага, в таком

состоянии находится и растение»

Гиппократ

Ведение

Эти слова, сказанные Гиппократом еще в глубокой древности, не потеряли свою актуальность и сейчас. В наше время общество осознало опасность токсического загрязнения поверхностных вод и пришло к необходимости введения в практику мониторинга совершенно новых нетрадиционных подходов, в частности биологического тестирования. Биотестирование - исследование влияния различных веществ на живые организмы. Широкое внедрение методов биотестирования в практику оценки качества вод - настоятельная необходимость времени, так как никакая даже самая современная аналитическая химия не даст полной информации о токсичности среды. К тому же анализ существующих методов оценки качества природных вод показал, что биотестирование - наиболее точный, быстрый и дешёвый способ охраны природных вод.

В своем исследовании с помощью данного метода мы решили выяснить, в каком же состоянии находится вода нашего города, которую мы пьем и которой поливаем растения, используемые нами в пищу.

Гипотеза: с помощью методов биотестирования можно оценить степень загрязнения

природных вод.

Объект исследования: степень загрязнения природных вод г.Пятигорска.

Предмет исследования: однолетние растения семейства Злаковые (Gramíneae): овёс, ячмень, пшеница, однолетние растениясемейства Капустные, или Крестоцветные (Brassicaceae) - кресс-салат и редис.

Цель данной работы - оценить загрязнение природных вод г.Пятигорска по проросткам различных растений-индикаторов.

Задачи:

    провести анализ теоретических подходов в изучении данной темы;

    освоить методику биотестирования;

    установить сезонную динамику токсичности природных вод г.Пятигорска;

    определить зависимость развития тест-растений от токсичности природных вод.

1. Литературный обзор.

    1. Методы биотестирования.

Одной из главных причин негативных последствий антропогенного загрязнения природных сред является токсичность загрязняющих веществ для биоты. Именно присутствие токсикантов в окружающей среде приводит к гибели всего живого, выпадению из состава сообществ организмов обитателей чистых зон и замене их эврибионтными видами. Существуют различные физические и химические методы определения токсичности окружающей среды, но в последнее время стали широко использоваться и биологические методы позволяющие провести оценку состояния живых организмов (Приложение 1).

Ведь говоря о загрязнении воды, почвы, атмосферы, об их токсичности мы имеем в виду, то насколько они благоприятны для обитания в них живых организмов, для здоровья человека.К числу наиболее радикальных приёмов относятся методы токсикологического биотестирования. Под биотестом понимается испытание в строго определённых условиях действия вещества или комплекса веществ на водные организмы посредством регистрации изменений того или иного биологического показателя исследуемого объекта по сравнению с контролем. Исследуемые организмы называются тест-объетами, а опыт биотестированием (Лысенко, 1996). Этот дешевый и универсальный метод в последние годы широко используется во всем мире для оценки качества объектов окружающей среды. В России с 1996 года начат эксперимент по внедрению методов биотестирования сточных вод, сбрасываемых в природные водоемы и подаваемых на сооружения биологической очистки. С помощью биотестирования можно получить данные о токсичности конкретной пробы, загрязненной химическими веществами антропогенного или природного происхождения. Этот метод позволяет дать реальную оценку токсичности свойств какой-либо среды, обусловленной присутствием комплекса загрязняющих веществ и их метаболитов. Живые организмы всегда в той или иной степени реагируют на изменение окружающей среды, но в ряде случаев это нельзя выявить физическими или химическими методами, так как разрешающие возможности приборов или химических анализов ограничены. Чувствительные же организмы - индикаторы реагируют не только на малые дозы экологического фактора, но и дают адекватную реакцию на воздействие комплекса факторов (Груздева, 2002). .

Биотестирование позволяет установить районы и источники загрязнения. В качестве тест-объектов используются бактерии, водоросли, высшие растения, пиявки, дафнии, моллюски, рыбы и другие организмы. В порядке возрастания толерантности к загрязнениям организмы располагаются в следующий ряд: грибы, лишайники, хвойные, травянистые растения, листопадные растения. Каждый из них имеет преимущества, но, ни один не является универсальным, самым чувствительным ко всем веществам. Для гарантированного выявления присутствия в природных водах токсического агента неизвестного химического состава нужно использовать набор тест-объектов, представляющих различные группы организмов. При выборе тест-организмов исходят из видовой токсичности возможных загрязнителей, особенностей водоема и требований водопотребителей. Для тест-организмов могут быть выделены частные интегральные тест-функции. Интегральные параметры характеризуют состояние системы наиболее обобщённо. Для организмов к интегральным относят характеристики выживаемости, роста, плодовитости. Частными для организма, например, могут быть физиологические, биохимические и гистологические параметры.

    1. Биотестирование природных вод.

Биотестирование природных вод стало широко применяться в научно- исследовательских работах с начала 80-х годов (Приложение 2). Это объясняется существенным увеличением уровня загрязнения водных объектов и надеждами специалистов на то, что биотестирование сможет хотя бы частично заменить химический анализ вод, так как в водные объекты ежегодно сбрасывается около 55 км 3 сточных вод, из которых 20 км 3 загрязнен. (Степановских, 2001). До нормативного качества очищается лишь около 10% вод требующих очистки (Яблоков, 2005).

В 1991г. биотестирование введено как обязательный элемент контроля качества поверхностных вод, что предусмотрено «Правилами охраны поверхностных вод» (1991). Показатели биотестирования природных вод включены в перечень показателей для выявления зон чрезвычайной экологической ситуации и зон экологического бедствия (Туманов, Постнов, 1983). Методы биотестирования представляют собой характеристику степени воздействия на водные биоценозы. Так, А.М. Гродзинский Д.М. Гродзинский (1973) описывают ряд биологических проб для тестирования токсичности природных вод. Согласно принятому определению, биотестирование воды - это оценка качества воды по ответным реакциям организмов, являющихся тест-объектами. Тест на прорастание семян применяется для установления воздействия различных физиологически активных веществ. В качестве индикаторов токсичности используются семена сельскохозяйственных растений. Среди сельскохозяйственных культур наиболее чувствительны салат, люцерна, злаковые, крестоцветные, а к нечувствительным видам относят кукурузу, виноград, розоцветные, подорожник (Рамад,1981). Методы биотестирования должны отвечать следующим требованиям: относительная быстрота проведения, получение достаточно точных и воспроизводимых результатов, наличие, пригодных для индикации объектов в большом количестве. В настоящее время хорошо известны методы биотестирования, ориентированные на определение токсичности водной среды, обусловленной присутствием определенных групп химических соединений, в частности фосфорорганических. Наиболее апробирован на природных водах ферментативный метод В.И. Козловской.

    1. Достоинства методов биотестирования.

Главные достоинства биотестирования - простота и доступность приемов ее постановки, высокая чувствительность тест-организмов к минимальным концентрациям токсических агентов, быстрота, отсутствие надобности в дорогостоящих реактивах и оборудовании. По мнению ряда авторов ни один из отдельно взятых организмов не может служить универсальным тест-объектом к веществам различной химической природы, следовательно, для гарантированного выявления в среде токсичного агента должен использоваться набор биотестов (Брагинский и др. 1979; Лесников, 1983; Филенко, 1989).

Методами биотестирования выявляется токсичность, которая является интегральным показателем загрязнения природных сред. Как и все интегральные показатели, они имеют тот недостаток, что не раскрывают индивидуальные загрязняющие вещества, присутствующие в пробе. Работ по биотестированию водной среды опубликовано множество, но они были сделаны главным образом с целью оценки токсичности вновь синтезируемых химических препаратов, препаратов, приобретаемых по импорту, а также при разработке регламентов на химические соединения. Гораздо меньше публикаций по биотестированию сточных вод и ещё меньше - по биотестированию природных вод (Никаноров, Хоружая, 2001).

Методы биоиндикации, позволяющие изучать влияние техногенных загрязнителей на растительные и животные организмы на неживую природу являются наиболее доступными. Биоиндикация основана на тесной взаимосвязи живых организмов с условиями среды, в которой они обитают. Изменения этих условий, например повышение солености или рН воды может привести к исчезновению определенных видов организмов, наиболее чувствительных к этим показателям и появлению других, для которых такая среда будет оптимальной.

Существуют разные биологические индикаторы. О наличии некоторых загрязнителей можно судить по внешним признакам растений и животных. Благодаря «памяти» этих организмов, можно узнать и о роли тех факторов, которые в настоящее время уже не действуют. Например, появление черных пятен на листьях липы рассказывает о том, что в зимнее время дворники чрезмерно увлекались посыпанием снега солью для ускорения его таяния, о выбросах сернистого газа расскажут пятна на листьях подорожника большого. По ширине годичных колец сосен в окрестностях химического предприятия можно определить, в какие годы завод особенно сильно загрязнял среду. В годы сильного загрязнения атмосферы закладываются более тонкие кольца. По высоте некоторых растений можно судить о концентрации солей в воде. Так, например, тростник может достигать высоты 4 м, но если содержание солей в воде высокое — это растение не вырастет более чем на 0,5 м. Индикаторами загрязнения атмосферы являются некоторые мхи и лишайники. Например, при анализе лишайников в Швеции было установлено появление радиоактивной пыли от Чернобыльской АЭС. Существуют специальные живые приборы — бриометры — маленькие коробочки со мхами определенных видов, по которым определяют режим задымления атмосферы.

    Практическая часть.

Исследования проводились по методикам , предложенным А.И. Федоровой и А.Н. Никольской в «Практикуме по экологии и охране окружающей среды», 2003, а также в учебном пособии для вузов «Экологический мониторинг» под редакцией Т.Я. Ашихминой, 2005.

Работа по изучению метода биотестирования токсичности природных вод по проросткам растений индикаторов выполнялась в течение 2015 года.

Все исследования по теме проводились в лаборатории кабинетов химии и биологии МБОУ СОШ №5 г. Пятигорска в дневное время, при сочетании искусственного и естественного освещения в стандартных, оптимальных для тест-растений условиях. Оценить уровень загрязнения водоемов можно, используя тест на прорастание семян. Такое тестирование проводится как предварительное для выявления особенно загрязненных водоемов с целью последующего химического анализа. В качестве тест-растений были использованы проростки высших растений: пшеницы, ячменя, овса, кресс-салата, редиса. Предлагаемый метод биологической оценки токсичности природных вод по проросткам растений индикаторов проводился в двух вариантах:

1.Полив проростков тест-растений испытуемой водой.

2. Накапывание испытуемого раствора между семядолями двудольных растений.

В качестве тест-растений в первом варианте применяли семена пшеницы, овса, ячменя. Во втором варианте были использованы только проростки двудольных растений: кресс-салата, редиса.

Из всех используемых в исследованиях растений кресс-салат обладает повышенной чувствительностью к загрязнению воды тяжелыми металлами. Этот биоиндикатор отличается быстрым прорастанием семян и почти 100% всхожестью, которая заметно уменьшается в присутствии загрязнителей. Кроме того, побеги и корни кресс-салата под действием загрязнителей подвергаются заметным морфологическим изменениям (задержка роста и искривление побегов, уменьшение длины и массы корней) (Голубкина, 2008). . С целью профилактики перед проращиванием семена протравливали. Сухие семена погружали в 1%-ный раствор марганцовокислого калия на 0,5 часа, а затем промывали дистиллированной водой, используя два слоя марли, обсушивали на фильтровальной бумаге на воздухе.

(1 вариант).

За 2-3 дня до опытов (сроки прорастания семян выяснялись заранее) семена тестовых объектов, пшеницы, овса, ячменя, замачивались на сутки в воде. Затем раскладывались пинцетом зародышем вверх (в одном направлении) в кювету, на дно которой был уложен слой гигроскопической ваты, а сверху - два слоя фильтровальной бумаги. Система увлажнялась водопроводной водой до полной влагоёмкости. Для этого вода наливалась под вату, а после её впитывания удалялся избыток. Кювета накрывалась плёнкой, края плёнки подгибались под кювету. Проращивание производилось при температуре +25 0 С - +26 0 С до размера основной массы проростков 10-15мм и появления корней, после чего ростки разделяют на фракции по длине.

В стаканчики помещают одинаковое количество промытого и покалённого песка, в каждый стаканчик высаживают по 10 одинаковых проростков тест-растений. Песок поливают сверху одинаковым количеством испытуемой воды из разных водоёмов. Повторность - трёхкратная. Контроль - полив отстоянной и очищенной водопроводной водой. После достижения ростками высоты 8-10см их выкапывают, обсушивают фильтровальной бумагой, разделяют бритвой на части (стебель, корни), измеряют и взвешивают. Данные обрабатывают статистически, выражают в процентах к контролю.

    1. Метод полива проростков тест-растений испытуемой водой

(2 вариант).

Воду, взятую из различных источников, концентрируют упариванием в 10 раз, хранят в холодильнике. Стаканчики наполняют одинаковым количеством промытого и прокалённого песка, вставляют стеклянную трубочку до дна, через которую производят полив, отстоянной водопроводной водой. 18-20 штук всхожих семян (кресс-салат, редис) высевают на небольшую глубину. После того, как ростки взойдут и раскроются семядоли, в стаканчиках оставляют по 10 одинаковых растений, остальные выщипывают пинцетом. Полив субстрата для выращивания производят одинаковым количеством воды через трубочку, используя воронку из фольги. Через 2-3 недели осторожно выкапывают проростки, промывают, обсушивают фильтровальной бумагой, измеряют и взвешивают отдельно надземную часть и корни. Данные обрабатывают статистически, выражают в процентах к контролю.

    1. Развитие проростков тест-растений при поливе их испытуемой водой (весенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

2. Новопятигорское озеро

4. Контроль -

водопроводная вода

Токсическое действие пробы считается доказанным, если в эксперименте зафиксирован токсический эффект торможения роста проростков, а именно их корней на 50 % (Груздева, 2002).

Из данных таблицы 1 видно, что наиболее благоприятной для роста и развития проростков тест-растений является проба № 2 - Новопятигорское озеро. Орловка. По степени роста и вегетативной мощности проростков можно сделать вывод о том, что в пробе № 1 (река Подкумок) наблюдается торможение роста корней проростков больше чем на 50 % по сравнению с контролем, следовательно, токсичность пробы № 1 высокая. В пробе № 3 (река Юца), наблюдается торможение роста и надземной части и корней проростков больше чем в пробе №1, поэтому токсичность пробы № 3 очень высокая.

2.4. Развитие проростков тест-растений при поливе их испытуемой водой

(осенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

2. Новопятигор-ское озеро

3. Река Юца

4. Контроль -

водопроводная вода

Из данных, представленных в таблице 2, видно, что в осенний период в большей степени наблюдается угнетение развития проростков в пробе № 3 - река Юца, торможение роста корней проростков в данной пробе более чем на 60% по сравнению с контролем. В пробах № 1 - река Подкумок и №2 - Новопятигорское озеро, также отмечается снижение в развитии вегетативных органов проростков.

В ходе последующей обработки материалов, по результатам, полученным в первом варианте исследований, были построены диаграммы биотестовых испытаний.

Рис. 1 Соотношение длины проростков тест-растений при поливе их испытуемой водой (весна, осень 2015г.)

Рис. 2 Соотношение массы проростков тест-растений при поливе их испытуемой водой (весна, осень 2015г.)

Таким образом, из результатов, полученных в 1 варианте, можно сделать выводы:

    токсичность природных вод в весенний период наиболее высокая в реках Подкумок и Юца;

    наиболее чувствительны к токсичности воды проростки овса.

2.5. Развитие проростков тест-растений (весенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

Кресс-салат

2. Новопятигор-ское озеро

Кресс-салат

3. Река Юца

Кресс-салат

4. Контроль -

водопроводная вода

Кресс-салат

По изменению надземной массы в опытных пробах по сравнению с контролем можно судить о токсичности данной пробы воды. Сильное угнетение надземной части растений тест-растений, более 20% по сравнению с контролем, показывает высокую степень токсичности пробы воды (Голубкина, 2008). Высокая токсичность наблюдается в пробе №3 - река Юца. У проростков наблюдается торможение развития надземной части на 53-55% больше чем в контрольной пробе. Пробы №1 - река Подкумок и №2 - Новопятигорское озеро также токсичны, но в меньшей степени.

2.6.Развитие проростков тест-растений (осенний период).

№ пробы, место взятия пробы

Тест -растение

Наземная часть, %

1.Река Подкумок

Кресс-салат

2. Новопятигор-ское озеро

Кресс-салат

3. Река Юца

Кресс-салат

4. Контроль -

водопроводная вода

Кресс-салат

Из данных таблицы 4 видно, наиболее токсична проба №3 - река Юца. Токсична проба воды №1 - река Подкумок. Проба №2 - Новопятигорское озеро имеет очень слабую токсичность.

По результатам, полученным во 2 варианте исследований, были построены диаграммы биотестовых испытаний.

Рис. 3 Соотношение длины проростков испытуемой (весна, осень 2015г.)

Рис.4 Соотношение массы проростков испытуемой водой (весна, осень 2015г.)

По результатам исследований можно сделать выводы:

    соотношение длины и массы проростков тест-растений зависит от токсичности природных вод, чем больше токсичных веществ в пробе воды, тем меньше длина и масса проростков тест-растений;

    наибольшую чувствительность к токсинам проявляет растение кресс-салата.

    токсичность природных вод выше в весенний период в пробах воды взятых из рек Подкумок и Юца;

    менее токсична проба воды из Новопятигорского озера.

В результате проведённых исследований была освоена методика биотестирования токсичности природных вод, проведен анализ теоретических подходов в изучении данной темы и сделаны следующие выводы:

    Выяснили, что токсичность природных вод водоемов г. Пятигорска изменяется по сезонам: в весенний период она больше, в осенний период токсичность уменьшается;

    Установили, что развитие и рост проростков тест-растений напрямую зависят от степени токсичности природных вод, наибольшую чувствительность к токсинам проявляют растения кресс-салата и овса;

    Определили, что при поливе проростков тест растений испытуемой водой в большей степени угнетается развитие корневой системы;

    Опытным путем установили, что наибольшей токсичностью характеризуются пробы воды рек Юца и Подкумок, менее токсична вода из Новопятигорскаго озера.

Таким образом, гипотеза о возможности оценки с помощью методов биотестирования степени загрязнения природных вод нашла свое подтверждение. На данном этапе работы в результате проведенного эксперимента без специального дорогостоящего оборудования, приборов и реактивов были установлены уровни загрязнения воды г. Пятигорска.

Наша работа может иметь продолжение в следующем учебном году. Для устранения погрешностей результата, на базе лаборатории можно провести химический анализ воды и еще раз проанализировать ситуацию.

Данный метод анализа природных вод можно рекомендовать садоводам-любителям и всем интересующимся данной проблемой жителям нашего города.

    Список литературы.

    Вишнякова В.Ф. Экология Ставропольского края. - Ставрополь, 2000.

    Голубкина Н.А. Лабораторный практикум по экологии.-М.,2008.

    Гродзинский А.М., Гродзинский Д.М. Краткий справочник по физиологии растений. - Киев; Наукова думка, 1973.

    Груздева Л.П. биоиндикация качества природных вод. // Биология в школе. 2002, № 6 с. 10

    Денисова С.И. Полевая практика по экологии. - Минск, 1999.

    Кулеш В.Ф., В.В. Маврищев Практикум по экологии. Минск, 2007.

    Лысенко Н.Л. Биоиндикация и биотестирование водных экосистем.// Биология в школе. 1996, № 5 с.12

    Никаноров А.М.,. Хоружая Т.А. Экология. - М., Приор, 2001.

    Рамад Ф. Основы прикладной экологии. - Л.: Гидрометеоиздат, 1981.

    Трифонова Т.А., Селиванова Н.В., Мищенко Н.В. Прикладная экология. М., Академический проект.,2007.

    Савельева В.В. География Ставропольского края. - Ставрополь, 2003.

    Степановских А.С. Охрана окружающей среды.- М.: ЮНИТИ-ДАНА, 2001.

    Теоретические вопросы биотестирования. - Волгоград, 1983.

    Фёдорова А.И., Никольская А.Н. Практикум по экологии и охране окружающей среды. - М., Владос, 2001.

    Филенко О.Ф. Методы биотестирования качества водной среды. - М.: МГУ, 1989

    Яблоков А.В. Экология России: состояние перспективы. 2005.

Приложение 1

Таблица 1

Основные характеристики методов оценки токсичности вод

Химические методы

Биологические методы

Биоиндикация

Биотестирование

Тип индикации

Индикация воздействия

Индикация отклика

Индикация воздействия

Объект анализа

Водные сообщества

Цель анализа

Измерение концентрации химических веществ

Оценка состояния природных сообществ

Интегральная оценка токсичности на тест-организмах

Показатели токсичности

Превышение установленных регламентов

Негативные изменения в сообществах

Развитие патологических (вплоть до гибели) изменений у тест-организмов

Регламенты

Предельно допустимые концентрации

Не установлены

Отсутствие острого и хронического токсического действия

Метрологические характеристики

Погрешность, сходимость, воспроизводимость

Не установлены

Сходимость, воспроизводимость

Таблица 2

Область применения методов биотестирования токсичности водной среды

Объект биотестирования

Цель биотестирования

Тест-организм

Химические вещества

Рыбохозяйственное нормирование; контроль токсичности в международной торговле

Гидробионты - представители основных трофических уровней водных экосистем. Стандартный набор тест - организмов

Производственные, технологические и сточные воды (точечные источники загрязнения)

Оценка эффективности очистки, выявление опасных компонентов, регламентация сброса, экологическая паспортизация предприятий

Наборы биотестов

Природные воды (неточечные источники загрязнения)

Проверка соответствия качества воды установленным регламентам. Оценка токсикологического состояния водных объектов. Выявление зон экологического бедствия и чрезвычайных ситуаций

Наборы биотестов

Приложение 2

Фото№1. Проростки кресс-салата Фото№2. Проростки кресс-салата

(контроль) (опыт)

Биотестирование (биологическое тестирование) - оценка качества объектов окружающей среды (воды и пр.) по ответным реакциям живых организмов, являющихся тест-объектами.

Это широко распространенный экспериментальный методический прием, который представляет собой токсикологический эксперимент. Суть эксперимента заключается в том, что тест-объекты помещают в исследуемую среду и выдерживают (экспонируют) определенное время, в течении которого регистрируют реакции тест-объектов на воздействие этой среды.

Приемы биотестирования широко применяются в различных областях природоохранной деятельности и используются по различным назначениям. Биотестирование является основным методом при разработке нормативов ПДК химических веществ (биотестирование токсичности индивидуальных химических веществ), и, в конечном итоге, при оценке из опасности для окружающей среды и здоровья населения. Таким образом, оценка уровня загрязнения по результатам химического анализа, т.е. интерпретация результатов с точки зрения опасности для окружающей среды, также в значительной степени опирается на данные биотестирования.

Методы биотестирования, будучи биологическими по сути, близки по смыслу получаемых данных к методам химического анализа вод: как и химические методы, они отражают характеристику воздействия на водные биоценозы.

Требования, применяемые к методикам биотестирования:

  • - чувствительность тест-организмов к достаточно малым концентрациям загрязняющих веществ.
  • - отсутствие инверсии ответных реакций тест-организмов на разные значения концентрации загрязняющих веществ в пределах тех значений, кот-е отмечены в природных водах;
  • - возможность получать надежные результаты, метрологическая обеспеченность методик;
  • - доступность тест-организмов для сбора, простота культивирования и содержания в условиях лаборатории;
  • - простота выполнения процедуры и технических приемов биотеста;
  • - низкая себестоимость работ по биотестированию.

Развиваются два основных направления работ по биотестированию:

  • - подбор методик с использованием гидробионтов, охватывающих основные иерархические структуры водной экосистемы и звенья трофической цепи;
  • - поиск наиболее чувствительных тест-организмов, которые позволили бы уловить низкий уровень токсичности при обеспеченной гарантии надежности информации.

Для токсикологической оценки загрязнения пресноводных экосистем на основе биотестирования водной среды рекомендовано использовать несколько видов тест-объектов: водоросли, дафнии, цериодафний, бактерии, простейшие, коловратки, рыбы.

Водоросли - основа пищевых цепей во всех природных экосистемах. Наиболее чувствительные организмы к широкой гамме химических веществ от детергентов до НФПР. Отмирание клеток, нарушение скорости роста, изменение процессов фотосинтеза и др. метаболич. процессов. Chlorella vulgaris, Scenedesmus quadricauda, Anabaena, Microcystis, Oscillatoria, Phormidium.

Бактерии - изменение скорости разложения (биодеградации) органических соединений/ Nitrosomonas, Nitrosobacter; изменение метаболических процессов в организме - Escherichia coli (оценка влияния токсиканта на сбраживание глюкозы)

Простейшие. Дафнии. ДДТ, (ГХЦГ)гексахлорциклогексан, ТЯЖЕЛЫЕ металлы (медь-цинк-кадмий-хром), биогенные элементы. Daphnia magna.

Коловратки

Рыбы. Гуппи (Poecillia reticulata) - металлы, пестициды; данио (Brachidanio rerio).

Рыбы природных вод. Высокочувствительные: - лососевые (форель), шиповка, пескарь, плотва, голец, судак, верховка; среднечувствительные: окунь, красноперка, лещь, гольян, карп, уклея.

Токсичность вод

О наличии токсичности судят по проявлениям негативных эффектов у тест-объектов, которые считаются показателями токсичности.

Среди показателей токсичности выделяют: общебиологические, физиологические, биохимические, химические, биофизические, и т.д.

Показателем токсичности является тест-реакция, изменения которой регистрируют в ходе токсикологического эксперимента.

Следует заметить, что под токсикологическими (биотестовыми) показателями в экологической и водной токсикологии понимают показатели биотестирования на различных тест-объектах. В тоже время в санитарно-гигиеническом нормировании под токсикологическими показателями понимают концентрации токсичных химических веществ (например, в нормировании питьевой воды они характеризуют ее безвредность).

При биотестировании проб природной воды обычно ставят два вопроса: - токсична ли проба природной воды; - какова степень токсичности, если таковая имеется?

В результате биотестирования проб на основе регистрации показателей токсичности делают оценку токсичности по критериям, установленным для каждого биообъекта. Результаты биотестирования опытной пробы с исследуемого участка сравнивают с контрольной, заведомо нетоксичной пробой и по разнице в контроле и опыте судят о наличии токсичности.

При этом эффекты воздействия делят на острые и хронические. Их обозначают как острое и хроническое токсическое действие или как острую и хроническую токсичность (ОТД и ХТД). Эти термины и используют для выражения результатов биотестирования.

Острое токсическое действие - воздействие, вызывающее быструю ответную реакцию тест-объекта. Его чаще всего измеряют по тест-реакции «выживаемость» за относительно короткий период времени.

Хроническое токсическое действие - воздействие, вызывающее ответную реакцию тест-объекта, проявляющуюся в течение относительно долгого периода времени. Измеряют по тест-реакциям: выживаемость, плодовитость, изменение роста и т.п.

Реакция тест-объектов на токсическое воздействие зависит от интенсивности или продолжительности воздействия. По результатам биотестирования находят количественную зависимость между величиной воздействия и реакцией тест-объектов.

Реакция организмов на воздействие токсических химических веществ представляет собой комплекс взаимосвязанных эволюционно сформировавшихся реакций, направленных на сохранение постоянства внутренней среды организма и в конечном итоге на выживание.

Выявлены определенные закономерности реакций организмов на токсические воздействия. В общем виде воздействие токсического вещества на организм описывается двумя основными параметрами: концентрацией и временем воздействия (экспозицией). Именно эти параметры определяют степень влияния токсичного вещества на организм.

Экспозиция - период, в течение которого организм находится под воздействием исследуемого фактора, в частности химического вещества. В зависимости от экспозиции различают острое или хроническое токсическое воздействие.

Результат токсического воздействия обычно называют эффектом токсического воздействия. Для описания зависимости между эффектом воздействия токсического вещества на организм и его концентрацией предложены различные функции, например, формула Хабера:

Где Е - эффект (результат) воздействия;

С - концентрация воздействующего вещества;

Т - время воздействия (экспозиция).

Е - представляет собой любой результат воздействия (гибель тест-объектов), а величины С и Т - могут быть выражены в соответствующих единицах измерения.

Как видно из формулы Хабера, между эффектом временем воздействия концентрацией имеется прямая функциональная связь: эффект будет тем большим, чем больше величина воздействия (конц-ция вещ-ва) и/или его продолжительность.

Формула Хабера позволяет сравнивать биологические эффекты различных химических веществ с помощью анализа их конц-ции или экспозиции. Отличия по какому-либо из этих величин отражают отличия в чувствительности организмов к токсическому воздействию.

При малых конц-циях или экспозициях эффект воздействия проявляется в популяции у небольшого числа тест-объектов, которые оказываются наиболее чувствительными, т.е. наименее устойчивыми к воздействию. По мере увеличения концентрации или экспозиции число устойчивых организмов падает, и в конце концов у всех (или почти у всех) организмов удается зарегистрировать четко выраженные эффекты токсического воздействия. В ходе токсикологического эксперимента находят зависимость отклика тест-объектов от величины или времени воздействия.

Параметры токсичности химического воздействия:

  • - Летальная концентрация (ЛК50) - концентрация токсиканта, вызывающая гибель 50% тест-организмов за определенное время (чем ниже ЛК50, тем выше токсичность химического вещества или воды)
  • - Максимальная недействующая концентрация - наивысшая измеренная концентрация химического вещества (тестируемой воды), не вызывающая наблюдаемого химического воздействия (чем ниже МНК, тем выше токсичность хим. вещ-ва или сточной воды).

Не все организмы одинаково реагируют на одно и то же воздействие. Реакция зависит от чувствительности к возд-вию.

Чувствительность организма к токсичному веществу - это совокупность реакций на его воздействие, характеризующих степень и скорость реагирования организма. Характеризуется такими показателями, как время начала проявления отклика (реакции) или конц-ция токсического вещ-ва, при которой проявляется реакция; она существенно отличается не только у разных видов, но и у разных особей одного вида.

Согласно ряду чувствительности, разработанному С.А. Патиным (1988), тест объекты можно расположить следующм образом:

Рыбы-зоопланктон-зообентос-фитопланктон-бактерии-простейшие-макрофиты.

Существуют и другие ряды чувствительности.

Например, при биотестировании вод целлюлозно-бумажных предприятий: водоросли-бактерии-рыбы (по уменьшению чувствительности).

Факторы, влияющие на биотестирование:

  • - факторы, влияющие на тест-организмы (экспозиция; условия культивирования, в природе - условия жизни растений и животных; возрастные особенности, сезон года, обеспечение тест-организмов пищей, температура (пессимум и оптимум), освещенность);
  • - факторы, определяющие физико-химические свойства тестируемой природной воды, от которых зависит ее токсичность для тест-организмов (свежесть пробы, наличие в ней взвешенных частиц).

ЦОС ПВ Р 005-95


Документ разработан авторским коллективом в составе: Рахманин Ю.А., Ческис А.Б. (руководители разработки), Еськов А.П., Кирьянова Л.А., Михайлова Р.И., Плитман С.И., Роговец А.И., Тулакина Н.В., Русанова Н.А., Донерьян Л.Г., Пожаров А.В.

В приложениях использованы материалы Методического руководства по биотестированию воды РД 118-02-90* и методических документов по применению прибора "БИОТЕСТЕР", а также "Методики контроля токсичности медицинских изделий однократного применения, стерилизованных радиационным или газовым методом" (МЗ СССР, 1991 г.).

________________
* Документ, упомянутый здесь и далее по тексту, не приводится. За дополнительной информацией обратитесь по ссылке

Представлен: Техническим комитетом по стандартизации ТК-343 "Качество воды"

Внесён: Управлением стандартизации и сертификации пищевой, лёгкой промышленности и сельскохозяйственного производства Госстандарта России

Утверждён: Заместителем Председателя Госстандарта России 12.10.95 г. для издания и распространения в качестве методического справочного пособия.

Зарегистрирован: Центральным органом по сертификации питьевой воды, материалов, технологических процессов и оборудования, применяемых в хозяйственно-питьевом водоснабжении N ЦОС ПВ Р 005-95

ОБЩИЕ ПОЛОЖЕНИЯ

ОБЩИЕ ПОЛОЖЕНИЯ

В условиях постоянно нарастающего антропогенного загрязнения источников водоснабжения обеспечение безопасности и безвредности питьевой воды, поставляемой населению предприятиями водоснабжения, в значительной мере зависит от полноты, достоверности и оперативности контроля качества воды во всех технологических звеньях системы: в контрольных створах водных объектов, в местах водозаборов, в ёмкостях чистой воды после ее очистки и обеззараживания, в распределительной водопроводной сети у потребителей. При этом число нормируемых и контролируемых параметров качества, в совокупности определяющих безопасность и безвредность воды, увеличилось за последнее десятилетие более, чем в два раза и в соответствии с рекомендациями Всемирной Организации Здравоохранения (ВОЗ) включает более 100 нормативов. Высокая токсичность и соответственно низкие значения предельно-допустимых концентраций (ПДК) для ряда тяжелых металлов и большинства органических токсикантов существенно усложняют процедуры аналитического химического контроля, требуют продолжительного времени и весьма значительных материальных затрат на проведение комплексного контроля качества воды. Кроме того, проведение даже полного анализа качества воды по всем установленным в нормативных документах индивидуальным показателям не дает возможность определить их комплексное воздействие на организм человека, а принятие системы суммирования относительных концентраций не отражает в полной мере механизм совокупного воздействия токсикантов на степень опасности потребляемой человеком воды.

В связи с этим наряду с традиционными методами для контроля качества воды в системах хозяйственно-питьевого водоснабжения могут применяться методы биологического тестирования, основанные на оценке степени опасности воды источников водоснабжения и питьевой воды по реакции специально подготовленных живых организмов - тест-объектов.

Особенность информации, получаемой с помощью методов биотестирования, состоит в интегральном характере восприятия и отражения всех токсических воздействий, обусловленных совокупностью содержащихся в воде токсикантов и комплексных факторов их совместного присутствия.

При этом применение различных методов биотестирования должно быть ограничено определенными условиями в отношении целей контроля, места отбора проб воды, степени оперативности и т.п., в зависимости от специфических характеристик каждого конкретного метода. Возможно комплексное использование различных биотестов, взаимно дополняющих друг друга по чувствительности к различным группам токсикантов.

Во всех случаях использование методов биотестирования не может заменить аналитический физико-химический контроль, установленный действующими нормативными документами, однако биотесты могут существенно дополнить его результаты оценкой комплексного воздействия содержащихся в воде токсикантов, повысить оперативность обнаружения опасных уровней загрязнения источников питьевого водоснабжения для принятия экстренных мер по вводу резервных мощностей очистки или предупреждения потребителей, а также в ряде случае позволить увеличить периодичность отбора проб для физико-химического контроля и соответственно снизить затраты на контроль при подтверждаемом биотестами сохранении стабильных показателей уровня безопасности исходной воды в источнике водоснабжения.

Настоящий документ устанавливает общие методические рекомендации по применению различных методов биотестирования в централизованных системах хозяйственно-питьевого водоснабжения для решения конкретных задач по контролю качества воды в источниках водоснабжения и очищенной воды, подаваемой потребителям в сочетании с традиционными методами физико-химического контроля.

Методические рекомендации предназначены для использования предприятиями водоснабжения и водоотведения в целях совершенствования систем контроля качества воды, повышения его надежности и оперативности, а также могут быть использованы органами Госкомсанэпиднадзора России при выполнении надзорных функций за качеством воды источников водоснабжения и качеством питьевой воды для повышения достоверности оценки безопасности (безвредности) контролируемой воды в отношении комплексного воздействия находящихся в ней токсикантов.

ХАРАКТЕРИСТИКА МЕТОДОВ БИОТЕСТИРОВАНИЯ, ИСПОЛЬЗУЕМЫХ ДЛЯ КОНТРОЛЯ КАЧЕСТВА ВОДЫ В СИСТЕМАХ ХОЗЯЙСТВЕННО-ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ

Основными характеристиками методов биотестирования, определяющими цели и условия их возможного использования в системах хозяйственно-питьевого водоснабжения, являются:

- вид тест-объекта;

- контролируемый параметр тест-объекта (тест-реакция);

- процедуры измерения тест-реакции;

- оценочные нормативы для определения степени опасности контролируемой среды (воды) для человека по замеренным параметрам тест-реакции.

В качестве тест-объектов в современных методах биотестирования для контроля безопасности (безвредности) воды могут быть использованы рыбы, ракообразные (дафнии и др.), инфузории, зародышевые организмы, водоросли, ферменты, бактерии и др.

Основные требования к тест-объектам состоят в их доступности, простоте и удобстве культивирования или хранения для использования, достаточной чувствительности к содержащимся в воде токсикантам, опасным для человека.

Тест-реакция тест-объекта при воздействии токсикантов или других неблагоприятных факторов окружающей среды может выражаться в гибели тест-объектов (выживаемости), снижении интенсивности размножения, снижении подвижности или других поведенческих характеристик, типичных для данного тест-объекта, а также в подавлении некоторых биохимических процессов, протекающих в клетках и ферментных системах.

Основные требования к тест-реакциям при выборе методов биотестирования для практического использования состоят в наличии ясно выраженной зависимости фиксируемых отклонений от нормы от концентраций токсикантов в воде, а также в возможности наблюдения и регистрации количественных значений тест-реакций с необходимой точностью и достоверностью при использовании доступных средств контроля.

Основные требования к процедурам измерения тест-реакций при использовании методов биотестирования для контроля качества воды в системах водоснабжения состоят в возможности получения требуемого "отклика" на появление в воде опасных токсикантов в максимально сжатые сроки. Это, как правило, требует использования специальных контролирующих устройств с элементами автоматизации, обеспечивающими преобразование регистрируемых тест-реакций в нормируемые величины характеристик токсичности воды.

Методы биотестирования, в которых процедуры измерения тест-реакции рассчитаны на длительный период наблюдения, могут найти ограниченное применение на стадии обследования и выбора источника водоснабжения для хозяйственно-питьевых целей или при наблюдении за источниками водоснабжения с заведомо стабильным качеством воды.

Оценочные нормативы при использовании методов биотестирования должны позволять на основе полученных результатов замеров сделать заключение о степени опасности воды и о принятии при превышении допустимых норм опасности (токсичности) воды необходимых мер по предотвращению возможной угрозы здоровью населения, потребляющего питьевую воду из данной системы водоснабжения.

В настоящее время в действующих нормативных документах отсутствуют утвержденные нормированные величины предельно-допустимых комплексных токсических воздействий, измеряемых с помощью методов биотестирования.

В связи с этим для каждого конкретного метода биотестирования в результате специальных исследований устанавливают корреляционные связи фиксируемых значений тест-реакций с возможным токсическим воздействием на теплокровных животных или с концентрациями конкретных токсикантов и на этом основании вводят определенные оценочные значения степени токсичности (опасности) контролируемой воды в зависимости от фиксируемых результатов измерений при биотестировании.

При этом следует иметь в виду, что эти оценочные значения не являются критериями опасности или безопасности воды при использовании ее человеком для питьевых целей в течение длительного времени; они могут только указывать на вероятность наличия или отсутствия в воде опасных концентраций токсических загрязнений, что должно подтверждаться результатами соответствующего химического контроля, на основании которого с учетом действующих ПДК делается заключение о соответствии питьевой воды установленным требованиям и ее пригодности для использования людьми.

Вместе с тем, в сравнительном плане при оценке, например, различных технологий очистки воды, обеспечивающих ее соответствие нормативным требованиям по отдельным видам токсикантов, предпочтение должно отдаваться тем методам, которые обеспечивают более высокий уровень безопасности, определяемый методами биотестирования.

В таблице 1 приведены основные характеристики методов биотестирования, рекомендуемых для использования в целях контроля качества воды в системах хозяйственно-питьевого водоснабжения. Описание методов приведено в справочных приложениях, нумерация которых соответствует номерам тест-объектов в таблице 1.

Таблица 1

Тест-объект

Тест-реакция

Способ измерения тест-реакции

Норматив (индекс токсичности)

1. Клеточный тест-объект (гранулиро-
ванная сперма быка)

Изменение показателей подвижности тест-объекта

Подсчет числа флуктуаций интенсивности рассеянного излучения, вызванного прохождением тест-объекта через оптический зонд, с использованием автоматической контрольной системы

Допустимые значения индекса токсичности (отношение определяемых значений, характеризующих подвижность тест-объекта в опытном и контрольном растворах): %

2. Инфузории парамеции

Реакция хемотаксиса - число инфузорий, направленно перемещаю-
щихся в зоне анализа

Измерение приборами серии "Биотестер" (например, "Биотестер-2"), обеспечивающими регистрацию тест-реакций с выдачей данных в условных единицах токсичности.

Допустимые значения индекса токсичности (допустимая степень загрязнения): ; высокая степень загрязнения:

3. Инфузории тетрахимена-
периформис

Изменение выживаемости и интенсивности размножения

Визуальная оценка (подсчет) под микроскопом количества тест-объектов через определенные промежутки времени (15 мин, 1 час, 6 час, 24 часа, 48 часов).

Острое токсическое действие - гибель 100% инфузорий в течение 6 часов. Хроническое токсическое действие при коэффициенте токсичности (снижение числа тест-объектов по сравнению с контролем за 48 часов.) и

4. Штамм бактерий Е-колли

Изменение уровня дегидрогеназной активности микроорганизмов (подавление актив. фермента)

Определение времени обесцвечивания метиленового-синего, как косвенного показателя активности фермента дегидрогеназы.

Признак отсутствия токсичности - отклонение времени обесцвечивания от контрольной пробы меньше, чем на 15%.

5. Ракообраз-
ные (дафнии, цеиодафнии)

Изменение показателей выживаемости и плодовитости

Визуальная оценка (подсчёт) количества тест-объектов через определенные промежутки времени в сопоставлении с контрольными пробами.

Острое токсическое действие - гибель более 50% ракообразных за 96 часов. Хроническое токсическое действие - достоверное снижение по сравнению с контролем тест-объектов в течение 20 суток.

6. Водоросли (сценедесмус, хлорелла)

Снижение интенсивности размножения (прироста клеток водорослей)

Визуальная оценка (подсчет) прироста числа клеток в сопоставлении с контрольным опытом.

Показатель токсического действия - достоверное снижение коэффициента прироста числа клеток по сравнению с контролем через 96 часов (острое токсическое действие) и через 14 суток (хроническое токсическое действие)

7.Рыбы (гуппи, данио)

Снижение выживаемости

Визуальная оценка (подсчет) среднего количества тест-объектов, выживших в тестируемой воде в сопоставлении с контрольным опытом

Острое токсическое действие - гибель 50% и более рыб за 96 часов. Хроническое токсическое действие - достоверное снижение выживаемости рыб за 30 суток по сравнению с контрольным опытом


Наряду с перечисленными в таблице 1, практическое применение для оценки качества воды в системах хозяйственно-питьевого водоснабжения находят специальные методы, в частности, для определения суммарной мутагенной активности с использованием биологических тест-систем после проведения соответствующей подготовки. При анализах питьевой воды такая подготовка включает операции экстракции, концентрирования и стерилизации. Для оценки мутагенного потенциала полученных экстрактов наиболее часто применяется тест Эймса (сальмонелла/микросомы) и тесты на индукцию цитогенетических нарушений (хромосомные аберрации, микроядра, сестринские хроматидные обмены). Описание указанных процедур содержится в "Методических указаниях по экспериментальной оценке суммарной мутагенной активности загрязнений воздуха и воды" (Минздрав СССР, М.,1990). Сложность реализации указанных методов обуславливает возможность их применения в специальных лабораториях НИИ, имеющих необходимое оборудование и квалифицированный персонал.

В частности, указанные исследования систематически проводятся в НИИ экологии человека и гигиены окружающей среды им.А.Н.Сысина РАМН.

ОБЩИЕ ПРАВИЛА ПРИМЕНЕНИЯ МЕТОДОВ БИОТЕСТИРОВАНИЯ ДЛЯ КОНТРОЛЯ КАЧЕСТВА ВОДЫ В ЦЕНТРАЛИЗОВАННЫХ СИСТЕМАХ ХОЗЯЙСТВЕННО-ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ

Контроль качества воды в централизованных системах хозяйственно-питьевого водоснабжения включает отбор и анализ проб воды в следующих основных элементах технологической схемы:

- в источнике водоснабжения перед водозабором;

- на промежуточных стадиях процесса водоподготовки (технологический контроль);

- в емкости чистой воды и (или) из трубопроводов перед подачей в водопроводную распределительную сеть;

- в водопроводной сети из распределительных колонок или кранов

Кроме того, в крупных системах водоснабжения силами предприятия водоснабжения проводится контроль поверхностных источников водоснабжения путем отбора проб в различных створах как правило, в пределах зоны санитарной охраны.

С учетом специфики методов биотестирования, связанной с чувствительностью большинства тест-объектов к дезинфектантам, используемым в процессе водоподготовки, а также особенностей отдельных методов биотестирования в отношении сроков получения результатов (возможности реализации экспресс-контроля) и степени универсальности по выявлению различных видов токсикантов в табл.2 изложены рекомендации по предпочтительному использованию различных видов биотестов для контроля качества воды в различных объектах и различных контрольных точках систем водоснабжения.


Таблица 2

Объект контроля

Контрольные точки

Вода в источнике водоснабжения

Контрольные створы в пределах зон санитарной охраны

________________
* На территории Российской Федерации документ не действует. Действуют СанПиН 2.1.5.980-00 , здесь и далее по тексту. - Примечание изготовителя базы данных.

2. Непрерывный оперативный "Алярмконтроль" для своевременного обнаружения внезапного появления в источнике водоснабжения опасных концентраций токсикантов, наличие которых требует принятия специальных мер по дополнительному химическому контролю, очистке воды и (или) предупреждению населения.

3. Периодический контроль для определения степени опасности воды по совокупному действию находящихся в ней токсикантов.

зона водозабора

4. Непрерывный оперативный автоматизированный "Алярм-контроль"

5. Периодический контроль для подтверждения соответствия исходной воды общим требованиям безопасности

Питьевая вода

ёмкости чистой воды и контрольные точки перед входом в систему распределения

6. Периодический контроль после дехлорирования по общему токсическому действию токсикантов, которые могут образовываться в процессе очистки и обеззараживания воды (продукты дезинфекции - галогенорганические соединения и др.)

водоотборные устройства в сети водоснабжения

7. Периодический контроль проб воды для подтверждения отсутствия токсичного воздействия питьевой воды после прохождения по трубопроводам водопроводной системы.

Материалы, используемые в оборудовании, изделиях и процессах

8. Подтверждение отсутствия токсического эффекта в результате взаимодействия материалов с водой для выдачи разрешений на применение материалов (веществ) в сфере питьевого водоснабжения


В дополнение к рекомендациям, изложенным в табл.2, следует учитывать некоторые изложенные ниже особенности методов биотестирования, связанные с их чувствительностью к отдельным группам токсикантов и возможностями сопоставления фиксируемых результатов тест-реакций с данными стандартизованных методов химико-аналитического контроля.

Для клеточного тест-объекта (гранулированная сперма быка) экспериментально установлены корреляционные зависимости измеряемой тест-реакции от уровня токсикометрических параметров ( - половинная смертельная доза для крыс) и концентраций широкого круга органических токсикантов (хлорированные углеводороды, фенолы, акриламид, формальдегид и др.), которые, в частности, могут попадать в воду при контактах с полимерными материалами и изделиями. Определены предельные значения индекса токсичности, при которых отсутствует реакция лабораторных животных на совокупность различных токсикантов, находящихся в воде в определенных концентрациях. На этой основе данный метод одобрен Минздравом России для оценки полимерных материалов, используемых в медицинской технике. Установлена также чувствительность тест-объекта к тяжелым металлам (ртуть, свинец, кадмий).

Для методов биотестирования с использованием инфузорий установлены данные, характеризующие содержание в воде и концентрации ряда органических и неорганических компонентов, при которых фиксируется тест-реакция, отражающая острое токсическое действие указанных компонентов. На этой основе данный метод может быть рекомендован, в частности, для контроля за качеством воды в водных объектах (источниках водоснабжения), в которых могут содержаться токсичные соединения металлов (ртуть, хром, кадмий, никель, медь, цинк) и органические соединения (хлороформ, бензол, акриламид, винилацетат, метилметакрилат и др.).

При применении в качестве тест-объекта ферментных систем (оценка угнетения дегидрогеназы) выявлена достаточно высокая чувствительность тест-реакций на присутствие в воде повышенных концентраций ионов тяжелых металлов (ртуть, свинец, медь, кадмий), а также ряда органических соединений (фенолы, резорцин, гидрохинон и др.). Специфической особенностью при использовании ферментных тест-систем вместо живых организмов является отсутствие достаточной чувствительности к дыхательным ядам (цианиды), канцерогенам типа бензапирена, а также к некоторым анионам (нитриты, нитраты).

Использование ракообразных, водорослей и рыб в системах биотестирования для определения острого и хронического токсического действия контролируемой воды с соответствующей продолжительностью экспериментов характеризует общий уровень загрязнения воды токсичными компонентами и наличие неблагоприятных факторов, влияющих на жизненные функции организмов. В отношении чувствительности к отдельным токсикантам эти методы относительно менее специфичны по сравнению с применением, например, инфузорий, однако фиксируемые тест-реакции могут проявляться при опасных концентрациях в воде тяжелых металлов (ртуть, хром и др.), фенолов и их производных, отдельных высокотоксичных пестицидов и т.п.

При сопоставлении чувствительности методов биотестирования с методами аналитического химического определения отдельных химических веществ в пробах контролируемой воды отмечается, как правило, невозможность фиксации тест-реакций при низких концентрациях загрязнений воды на уровне ПДК, которые количественно определяются химическими методами.

Реально фиксируемые с необходимой достоверностью тест-реакции при наличии в воде индивидуальных токсикантов для типовых методов биотестирования в режимах экспресс-контроля наблюдаются при концентрациях, существенно превышающих ПДК.

Так, при использовании биотеста с инфузориями острое токсическое действие проявляется при концентрациях, составляющих для никеля - 5 ПДК, хрома и кадмия - 10-20 ПДК, хлороформа - 50 ПДК, бензола - 100 ПДК, фенола - 500 ПДК. Исключение составляет ртуть, для которой острый токсический эффект фиксируется при содержании 1-2 ПДК.

Однако все это относится только к случаям загрязнения воды индивидуальными токсикантами, а основное преимущество методов биотестирования проявляется в фиксации совокупного действия присутствующих в воде токсикантов, когда может иметь место суммирование воздействующих факторов, существенно снижающих уровень обнаружения отдельных токсикантов. При этом возможность экспресс-контроля при применении методов биотестирования с соответствующим приборным оснащением позволяет своевременно выявить возникновение чрезвычайных ситуаций, когда внезапно возникающие высокие уровни загрязнения воды опасными токсикантами могут нанести ущерб здоровью населения в короткие сроки при потреблении небольших количеств воды.

Сводные данные об организациях-разработчиках методов биотестирования, указанных в таблицах 1 и 2, и основных публикациях по этим вопросам, приведены в табл.3.


Таблица 3

NN методик по табл.1 и тест-объекты

Организации-разработчики и консультанты

Литературные источники

1 Клеточный тест-объект (гранулированная сперма быка)

Всероссийский научно-исследовательский и испытательный институт медицинской техники (ВНИИИИМТ), г.Москва; АО "БМК-ИНВЕСТ" г.Москва

Количественный экспресс-метод оценки токсичности питьевой воды, природных вод и промышленных стоков с применением клеточного тест-объекта.

А.П.Еськов, Р.И.Каюмов, Ю.С.Ротенберг Биотестирование с помощью суспензии сперматозоидов "Гигиена труда и профессиональные заболевания" N 8, 1989 г.

2 Инфузории парамеции

АО "Квант" г.Санкт-Петербург

Методика определения токсичности проб воды экспресс-методом на приборе "Биотестер" НИИ Гигиены и профпаталогии МЗ СССР, Л-д 1991

А.В.Пожаров, Ю.А.Рахманин, С.А.Шелемотов. Прикладные аспекты аппаратурного биотестирования воды. "Гигиена и санитария" 1994 г.

3 Инфузории тетрахимена периформис

НИИ экологии человека и гигиены окружающей среды им.А.Н.Сысина (НИИЭЧиГОС), г.Москва

Методы биотестирования вод, Черноголовка, 1988

4 Штам бактерий Е-колли (фермент дегидрогеназа)

Московский научно-исследовательский институт гигиены им.Ф.Ф.Эрисмана (МНИИГ), г.Москва

Предельно допустимые концентрации вредных веществ в воздухе и воде. Справочное пособие, ГИПХ, Л-д, 1972

5 Ракообразные (дафнии, цериодафнии)

ВНИИВОДГЕО, г.Москва; Гидрохимический институт г. Ростов;

Институт биологии внутренних вод РАН (ИБВВ), г.Дубна;

ГУАК, Минприроды России, г.Москва

Методическое руководство по биотестированию воды РД 118-02-09* Госкомприроды СССР, М.,1991

МС ИСО 6341:1989 "Качество воды. Определение подавления подвижности дафний"

6 Водоросли (сценедесмус, хлорелла)

МГУ, г.Москва

Методическое руководство по биотестированию воды РД 118-02-90 Госкомприроды СССР, М.,1991

МС ИСО 6341:1989 "Качество воды. Тест замедления роста пресноводных водорослей"

7 Рыбы (гуппи, данио)

Научно-исследовательский институт морского рыбного хозяйства (ВНИРО), г.Ростов; МГУ, г.Москва

Методическое руководство по биотестированию воды РД 118-02-09 Госкомприроды СССР, М.,1991

М.Н.Ильин. Аквариумное рыбоводство, М., изд.МГУ, 1997

8 Сальмонелла (биологические тест-системы для определения мутагенной активности)

НИИЭЧиГОС им.А.Н.Сысина, г.Москва

В.В.Соколовский, В.С.Жуков, Ю.А.Рахманин, И.Н.Рыжова. Методические указания по экспериментальной оценке суммарной мутагенной активности загрязнений воздуха и воды, Минздрав СССР, М.,1990;

А.М.Фонштейн, С.К.Абилев и др. Методы первичного выявления генетической активности загрязнителей среды с помощью бактериальных тест-систем;

Методические указания, М., 1985

ПРИЛОЖЕНИЕ 1: БИОТЕСТИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ КЛЕТОЧНОГО ТЕСТ-ОБЪЕКТА (гранулированная сперма быка)

1. Принцип метода

Принцип метода основан на анализе зависимости показателя подвижности суспензии сперматозоидов от времени и определении подавления их подвижности (сокращения среднего времени подвижности) под воздействием содержащихся в контролируемой воде токсикантов

Сперматозоиды могут существовать вне организма в средах простого состава до нескольких часов без изменений своих функциональных свойств.

Основное назначение половых клеток как носителей наследственной информации - оплодотворение яйцеклетки. Выполнение этой функции определяется их возможностью продвижения к месту оплодотворения, вследствие чего именно подвижность является основным показателем физиологического, биохимического и морфологического статуса сперматозоидов, который оказывается весьма чувствительным к воздействию широкого круга токсикантов.

Реализация метода осуществляется с применением автоматической аналитической системы (комплекса приборов), обеспечивающей сравнительную оценку показателя подвижности суспензии сперматозоидов в опытных (испытуемых) пробах воды и в контрольных средах, определение процедур расчетов и выдачу результатов в виде соответствующих индексов токсичности оцениваемых проб воды.

Оцениваемый системой показатель подвижности () определяется как функция концентрации подвижных клеток и среднего модуля их скорости

Где - коэффициент, связанный с конструкцией измерительной системы.

Оценка показателя подвижности осуществляется путем автоматического подсчета числа флуктуаций интенсивности рассеянного излучения, вызванного прохождением клеток через оптический зонд.

2. Тест-объект

В качестве тест-объекта используются сперматозоиды быка. Сперму получают на станциях искусственного осеменения в виде гранул, замороженных в жидком азоте. В замороженном виде в сосуде Дьюара с жидким азотом сперму можно хранить неограниченно долго.

Долив азота (4-5 литров) производят каждые 4-5 дней.

Коэффициент вариации концентрации сперматозоидов в гранулах спермы не превышает 10%, что обеспечивает достаточную стабильность и воспроизводимость в экспериментах по оценке их подвижности в контролируемых водных средах.

3. Аналитическая система

Аналитическая система включает комплекс приборов, в состав которого входит анализатор токсичности, блок подготовки образцов и компьютер с принтером, обеспечивающие автоматическое проведение оценки контролируемой тест-реакции, обработку результатов сравнительной оценки подвижности и выдачу итоговых данных в виде соответствующих распечаток.

Технические характеристики системы:

- длина волны лазерного излучения - 0,63 мкм;

- мощность лазерного излучения - не менее 1 мВт,

- время одного анализа - от 10 до 300 с с шагом 10 с;

- время перемещения кюветы (капилляра) с образцом - не более 2 с;

- время обратного хода каретки - не более 15 с;

- температура проб и рабочих образцов - 35-45 °С;

- допустимые пределы отклонения от установленной температуры - ±1,5 °С;

- объем кюветы (капилляра) с контролируемым образцом - 25 мкл;

- компьютер типа IBM PC AT (и последующие модели).

Блок-схема системы приведена на рис.1

Блок-схема комплекса

Рис.1. Блок-схема системы

1 - капилляр, 2 - каретка, 3 - привод, 4 - блок термостатирования капилляров, 5 - лазер, 6 - светоделительная пластина, 7 - микрообъектив, 8 - светоделительная пластина, 9 - экран, 10 - маска, 11 - фотодиод, 12 - усилитель, 13 - контроллер, 14 - компьютер, 15 - принтер, 16 - блок подготовки проб и рабочих образцов


Конструктивное исполнение системы обеспечивает возможность визуального наблюдения за клеточными тест-объектами в суспензии.

4. Вспомогательное оборудование, материалы, реактивы

Вспомогательное оборудование, материалы и реактивы включают:

- комплект кювет (капилляров) для помещения контролируемых образцов в аналитическую систему;

- пробирки с притертыми пробками по ГОСТ 1770-74 объемом 3-5 мл - 40шт.;

- пипеточные дозаторы объемом 0,2 мл и 0,5 мл;

- колбы мерные с притертыми пробками объемом 1000 мл - 2шт.;

- колбы конические с притертыми пробками объемом 50 мл и 100 мл - по 10 шт., объемом 500 мл и 1000 мл - по 2 шт.;

- весы торсионные типа ВТ-500;

- пинцет анатомический;

- сосуд Дьюара емкостью 26,5 л марки СДП-25 - 2 шт.;

- сосуд Дьюара емкостью 5 л марки СДС-5 - 1 шт.;

- шкаф сушильный;

- холодильник бытовой;

- сперма быка в гранулах, замороженная при температуре жидкого азота;

- азот жидкий;

- цитрат натрия кристаллический, х.ч.;

- глюкоза кристаллическая;

- спирт этиловый;

- вода дистиллированная;

- бидистиллят.

5. Условия и процедура биотестирования

5.1. Температура рабочих сред при проведении биотестирования должна поддерживаться в пределах 40±1,5 °С. Это достигается автоматическим термостатирующим устройством.

5.2. Проведение испытаний

5.2.1. Включают аналитическую систему нажатием тумблера "Сеть" за 30 мин до начала испытаний. С помощью компьютера задают условия проведения испытаний: температуру, время одного анализа, количество кювет (капилляров) с образцами. Информация о достижении необходимой температуры и готовности системы к работе выдается на дисплей.

5.2.2. Готовят опытные и контрольные растворы. В качестве контрольного раствора применяют глюкозо-цитратную среду состава: глюкоза - 4 г, цитрат натрия - 1 г, вода дистиллированная - 100 мл. Контрольная среда одновременно является разбавителем для оттаивания замороженной спермы. Изотонию опытного (испытываемого) раствора (проб воды) достигают путем добавления сухих реактивов: 4 г глюкозы и 1 г цитрата натрия на 100 мл воды. Вместо дистиллированной воды может быть использована "фоновая" проба воды из источника с известными показателями химического состава, отвечающими требованиям безопасности.

5.2.3. Дозируют по 1 мл контрольного и испытываемого раствора в пробирки и помещают в водный термостат для термостатирования при температуре 40±1,5 °С.

5.2.4. Для оттаивания замороженной спермы отмеривают в пробирки по 0,5 мл разбавителя (по п.5.2.2) и термостатируют их при температуре 40±1,5 °С. Охлажденным анатомическим пинцетом извлекают из сосуда Дьюара гранулу спермы и быстро опускают в нагретый раствор. Каждую гранулу размораживают в отдельной пробирке. Сразу после размораживания спермы содержимое пробирок сливают в одну пробирку и тщательно перемешивают. Смесь термостатируют при 40±1,5 °С.

5.2.5. Рабочие образцы для биотестирования в аналитической системе готовят путем внесения в каждую пробирку с контрольным и испытываемым растворами по 0,2 мл суспензии сперматозоидов (по п.5.2.4).

5.2.6. Для проведения анализов рабочие образцы из пробирок с контрольным и испытываемым растворами (по п.5.2.5) переносят в капилляры, выполняющие функции кювет, и герметизируют их путем поочередного окунания концов капилляров в ванну с парафином.

Капилляры с рабочими образцами помещают на каретку и устанавливают в привод аналитической системы.

С помощью компьютера проводят идентификацию капилляров и запускают процесс накопления экспериментальных данных. Процесс продолжают до достижения нулевых значений показателя подвижности во всех капиллярах, после чего проводят математическую обработку результатов по алгоритмам, реализуемым программой компьютера согласно изложенным ниже методическим положениям.

6. Обработка и оценка результатов

6.1. В результате эксперимента в системе для каждого образца биотестируемых растворов (испытываемых и контрольных проб воды) регистрируется зависимость:


где - показатель подвижности (по п.1),

- время

7.6.2. Для каждой из указанных зависимостей вычисляется средневзвешенное значение времени подвижности ,

Где - -ое значение показателя подвижности,

- текущий номер оценки показателя подвижности.

6.3. Для контрольной и опытной выборок образцов вычисляют среднее арифметическое значение и среднее квадратическое отклонение, по которым в свою очередь рассчитывают для каждой выборки коэффициент вариации , по формуле:

Где - среднее квадратическое отклонение,

- среднее арифметическое значение

В случае получения коэффициента вариации более 15% хотя бы для одной из выборок, повторяют эксперимент. Если значение коэффициента вариации для каждой из выборок меньше или равно 15%, то результаты контроля считают достоверными.

6.4. Вычисление индекса токсичности проводится по формуле:

Где и - средние арифметические значения средневзвешенного времени подвижности, соответственно, для опытной и контрольной выборок образцов.

6.5. Критерием отсутствия токсического воздействия является нахождение величин в интервале значений от 70 до 130%.

ПРИЛОЖЕНИЕ 2: БИОТЕСТИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ ИНФУЗОРИЙ PARAMECIUM

1. Принцип метода

Методика биотестового анализа водных проб основана на способности Paramecium caudatum - инфузории туфельки (далее - инфузории) избегать неблагоприятных и опасных для жизнедеятельности зон и активно перемещаться по градиентам концентраций химических веществ в зоны благоприятные (реакция хемотаксиса). Методика позволяет оперативно определять острую токсичность водных проб.

2. Характеристика тест-объекта, выращивание и подготовка культуры к анализу

2.1. В качестве тест-объекта используется Paramecium caudatum - инфузория туфелька. Относится к подцарству простейших (одноклеточных животных) - Protozoa, типу - Ciliophora. Инфузория широко распространена в пресных водоемах. Форма клетки эллипсоидная, размеры - 200х40 мкм. Основную пищу инфузории составляют бактерии, дрожжи и т.п. Размножение инфузории происходит путем поперечного деления клетки. В зависимости от условий выращивания время генерации может составлять от нескольких часов до нескольких суток.

По сравнению с другими группами простейших инфузории имеют наиболее сложное строение и отличаются разнообразием функций. Инфузория находится в непрерывном движении. Скорость ее при комнатной температуре - 2,0-2,5 мм/с. Траектория движения сложная: она движется вперед, вращаясь вдоль продольной оси тела, с помощью ресничек, количество которых достигает 10-15 тысяч. Изменение внешних условий (температура, химический состав среды, электромагнитные колебания и другие факторы) воспринимаются клеткой, и первая ответная реакция - изменение характера движения: уменьшение или увеличение скорости, частоты остановок и разворотов, разнообразные таксисы, например, гео-, магнито-, аэро-, хемотаксис.

2.2. Исходный материал для выращивания культуры инфузории передается при поставке прибора "БИОТЕСТЕР-2". Культуру можно также получить из коллекций культуры простейших, имеющихся в различных научных организациях (например, в БиНИИ СПб ГУ: 198904; Старый Петергоф, Ораниенбаумское шоссе, 2). Можно выделить свою культуру из местных водоемов или приобрести у аквариумистов, но необходимо при этом учитывать, что видовую принадлежность может определить специалист-протозоолог, т.к. существуют другие представители рода Paramecium caudatum.

2.3. Выращивание культуры

2.3.1. В данной методике может быть использована культура инфузории, выращенная по различным методикам, которые обеспечивают получение тест-объекта, во-первых, в достаточном для анализов количестве, во-вторых, чувствительного к модельному токсиканту в пределах концентраций, установленных в п.2.3.

Выращивание культуры проводят в любых удобных сосудах, например, в стеклянных колбах, стаканах, чашках Петри и других. В качестве корма используют бактерии, дрожжи и их смесь, выращенные стерильно на твердых средах. При отсутствии условий для выращивания стерильного корма, можно использовать воздушносухие пекарские дрожжи.

К общим положениям по выращиванию культуры относится обязательное требование идентичности среды выращивания и среды, которая будет использована для процедур отмывания культуры от продуктов метаболизма, получения рабочей взвеси, разведения водных проб и прочих процедур с культурой.

Метод культивирования инфузории приведен ниже в качестве примера.

2.3.2. Метод культивирования инфузории

В широкогорлую коническую колбу на 200 мл вносят суспензию инфузорий в среде Лозина-Лозинского в количестве 100 мл с плотностью 1000±200 клеток/мл. В качестве корма добавляют воздушносухие дрожжи из расчета 1 мг на 1 мл среды. Выращивание ведут при температуре 18-26 °С.

Для биотестового анализа используют культуру в начале стационарной фазы роста. Для контроля за развитием популяции отбирают ежесуточно пробу, в которой определяют количество клеток по п.2.3.4.1. Отсутствие прироста клеток в популяции свидетельствует о наступлении стационарной фазы роста, ежесуточный контроль позволяет определить ее начало. Обычно при заданных в начале данного раздела условиях стационарная фаза роста наступает на 2-3 сутки, при этом плотность культуры будет составлять 4000±1000 клеток/мл.

2.3.3. Поддержание и хранение культуры

При перерывах в проведении биотестовых анализов культуру достаточно поддерживать только как посевной материал. Один из способов поддержания - на зернах риса. В чашку Петри помещают 2-3 сырых зернышка риса, добавляют среду около 30-40 мл и помещают клетки инфузории туфельки в количестве 50-100 клеток/мл. Раз в 2 недели меняют среду и зерна риса.

Удобно содержать резервную культуру в пробирках. Один раз за 7-10 суток концентрат клеток из верхней части пробирки (без перемешивания) переливают в другую пробирку, добавляют среду Л-Л до прежнего объема и по 0,5 мг дрожжей на 1 мл жидкости.

Другой способ консервации культуры - хранение в холодильнике при низких положительных температурах. Скорость деления при этом может составлять одно деление в 10-20 суток. Культуру отмывают от продуктов метаболизма и старого корма, доводят концентрацию взвеси до 200±100 клеток/мл, добавляют сухие дрожжи 0,2 мг/мл и помещают в холодильник. Так культура сохраняется до месяца. При использовании культуры, сохранявшейся в холодильнике, необходимо дождаться выравнивания ее температуры с температурой остальных растворов и только после этого производить необходимые процедуры.

Особое внимание следует обратить на то, что инфузория не выдерживает резких перепадов температуры (!).

2.3.4. Определение концентрации взвеси инфузории

Концентрацию клеток необходимо определять в процессе выращивания культуры, при подготовке рабочей взвеси клеток и для определения величины тест-реакции. Определение концентрации клеток инфузорий без затруднений выполняется с помощью отградуированного прибора серии "Биотестер".

2.3.4.1. В общем случае концентрацию клеток инфузории определяют подсчетом клеток под микроскопом по общепринятым в микробиологической практике методикам: с помощью измерительных сеток, счетных камер и т.п. Подсчитанное количество клеток пересчитывают на единицу объема среды и выражают как концентрацию (клеток/мл). Ниже приводится пример способа подсчета клеток инфузорий. Исходную взвесь инфузорий взболтать, отобрать с помощью пипетки 0,5 мл взвеси. К этому объему добавить 9,5 мл 1% раствора NaCI. Таким путем достигается обездвиживание инфузорий. Не дожидаясь полного обездвиживания инфузорий (примерно через 2-5 мин) из разбавленной взвеси отбирают 0,5 мл и распределяют этот объем в виде 6-10 крупных капель на сухом стекле (например, в чашке Петри). С помощью микроскопа (лупы) подсчитывают инфузории во всех каплях. Полученный результат пересчитывают на 1 мл исходной взвеси.

Например: 0,5 мл взвеси обездвиженных инфузорий распределены в 6 каплях, в которых было сосчитано 29, 38, 32, 31, 28, 35 клеток - всего 193. В 1 мл разбавленной взвеси содержится 386 клеток, а в 1 мл исходной взвеси, следовательно, будет содержаться 3860 клеток инфузорий.

2.3.4.2. Специализированным средством для определения количества подвижных клеток инфузории является прибор серии "Биотестер". Определение концентрации подвижных клеток проводят по предварительно построенной градировочной кривой.

Для построения градировочной кривой берут взвесь клеток инфузории в среде Л-Л по п.2.3.2. Из взвеси готовят ряд разведений, каждое из которых по концентрации меньше предыдущего в 2 раза, объем взвеси каждого разведения не менее 5 мл. Последнее разведение может содержать 5-10 кпеток/мл. Исходную концентрацию клеток определяют подсчетом числа клеток под микроскопом (см.п.2.3.4.1). Концентрации клеток в серии разведений определяют соответствующим расчетом. При этом последовательно определяют концентрацию подвижных клеток инфузорий, находящихся в исходной рабочей взвеси и во всех разведениях, снимая показания на приборе. Для этого заполняют кювету контролируемой взвесью клеток до верха (инфузории не обездвиживать!), помещают в кюветный модуль прибора и снимают ряд показаний.

Процедуру подсчета клеток в исходной взвеси, приготовление разведений, измерение на приборе исходной взвеси и разведений повторяют не менее 3 раз и результаты усредняют. По полученным данным строят градировочную кривую как зависимость показаний прибора от логарифма концентрации клеток. Построенная кривая может быть использована продолжительное время с одним и тем же измерительным прибором.

2.4. Подготовка инфузорий к анализу

2.4.1. Выращенную по п.2.3 культуру инфузории отмывают от продуктов метаболизма и корма, доводят концентрацию до рабочего значения, проводят проверку готовности культуры к анализу по ее чувствительности к модельному токсиканту и по ее способности выходить в чистую пробу.

2.4.2. Отмывание культуры

При отмывании используют нормальную физиологическую реакцию инфузорий собираться в верхних слоях жидкости. Использование сосудов с узким длинным горлом позволяет сконцентрировать инфузории в верхней зоне и слить в другой сосуд с минимальным количеством загрязненной культуральной среды. Концентрат разбавляют чистой средой Л-Л, опять собирают клетки в верхней зоне и сливают. В результате отмывания инфузорий степень разбавления культуральной жидкости чистой средой должна быть не менее 1:200.

Пример. Культура выращена на среде Л-Л. Отмывочная среда - Л-Л. К 50 мл культуры добавляют 50 мл среды Л-Л, тщательно переливают в мерную колбу на 100 мл, обязательно заполняя горлышко. Через 5-15 минут инфузории собираются в верхней зоне. Сливают верхнюю часть жидкости из колбы. Получают взвесь клеток с разбавлением культуральной жидкости в два раза и объемом, например, 20 мл. Процедуру по отмыванию повторяют еще 2 раза, добавляя к 20 мл взвеси 80 мл среды Л-Л и получают взвесь клеток, например, в объеме 10 мл с разбавлением исходной взвеси инфузорий в 50 раз. Доводят объем полученной взвеси (10 мл) и получают разведение в 250 раз. Определяют концентрацию клеток в полученной взвеси по п.2.3.4 и доводят ее до значения 1000±200 кл/мл. Полученную рабочую взвесь клеток инфузорий после предварительной проверки используют в течение 1,5 часов.

2.4.3. Проверка готовности взвеси инфузорий к анализу

Проверку проводят по двум параметрам одновременно:

- по степени выхода инфузорий в контрольную чистую пробу;

- по чувствительности к модельному токсиканту.

2.4.3.1. Для проверки выхода инфузорий в контрольную пробу заполняют по п.4.1 три кюветы взвесью клеток, наслаивают среду Л-Л или заведомо нетоксичную воду (но не дистиллят). Через 30 минут измеряют концентрацию клеток в верхних зонах кювет по п.4.2. Усредняют результат по 3 кюветам и определяют готовность тест-культуры к биотестовому анализу по условию: выход должен быть не менее 70% от концентрации рабочей взвеси.

2.4.3.2. Для проверки чувствительности к модельному токсиканту в три кюветы наслаивают раствор сульфата меди с концентрацией 0,1 мг/л, приготовленный по п.3.4. Через 30 минут измеряют концентрацию в верхних зонах кювет по п.4.2 и рассчитывают индекс токсичности к раствору сульфата меди.

При культуру используют в биотестовом анализе.

3. Средства измерений, вспомогательные устройства, материалы, растворы.

3.1. Средства измерений:

- микроскоп бинокулярный с увеличением порядка 10-50;

- прибор серии БИОТЕСТЕР, например, БИОТЕСТЕР-2 - специализированный импульсный фотометр по ТУ 401-51-005-91* с набором фотометрических кювет;
________________
* ТУ, упомянутые здесь и далее по тексту, не приводятся. За дополнительной информацией обратитесь по ссылке . - Примечание изготовителя базы данных.

- весы лабораторные общего назначения (ГОСТ 8.520-84).

3.2. Вспомогательные устройства:

- сосуды для культивирования из химически инертного материала, например, химические стаканы, конические широкогорлые колбы, чашки Петри (ГОСТ 25336-82);

- пипетки, мерные колбы, пробирки (ГОСТ 20292-74 , 1770-74).

3.3. Материалы:

- соли марки ч.д.а. или х.ч.: натрий хлористый, калий хлористый, кальций хлористый, магний сернокислый, натрий углекислый кислый, медь сернокислая пятиводная;

- поливиниловый спирт ПВС - марка 11/2, высший сорт (ГОСТ 10779-78);

- дрожжи хлебопекарные воздушносухие - используются в качестве корма для инфузорий.

3.4. Растворы:

- взвесь клеток инфузорий, полученная путем выращивания тест-объекта в определенных условиях (см.п.2.3), отмытая от продуктов метаболизма и корма (см.п.2.4) и доведенная до рабочей концентрации (плотности) 1000±200 клеток/мл;

- среда для культивирования и разбавления: готовится на дистиллированной воде (среда Лозина-Лозинского, в дальнейшем Л-Л). Возможно использование водопроводной воды, которая должна быть соответствующим образом обработана (дехлорировать и отстоять в течение 5-10 суток).

Для приготовления концентрата среды Л-Л в 1 л воды растворяют следующие соли (марки ч.д.а. или х.ч.): NaCI - 1,0 г, KCI - 0,1 г, MgSO - 0,1 г, CaCIx2HO - 0,1 г, NaHCO - 0,2 г. Такой раствор можно хранить в холодильнике до 7 суток. Для работы используется среда Л-Л, полученная десятикратным разбавлением исходного концентрата. Разбавляющая среда и среда для культивирования должны быть идентичны и обеспечивать выживаемость инфузории в течение 5 суток;

- модельный токсикант на основе сульфата меди. Маточный раствор сульфата меди (10 мг/л) в дистиллированной воде хранят не более недели. Рабочие концентрации сульфата меди готовят перед самым определением. Растворы соли с концентрациями до 1 мг/л готовят в дистиллированной воде, а с концентрациями 0,1 мг/л и меньше - в среде Л-Л;

- раствор ПВС в среде Л-Л: 5% раствор используют в качестве нейтрального загустителя. Для приготовления раствора ПВС 0,5 г порошка ПВС смешивают с 9,5 мл среды Л-Л. Смесь нагревают на водяной бане до растворения порошка. Используют раствор в течение суток.

4. Метод определения

4.1. Метод определения токсичности жидких сред основан на способности тест-объектов реагировать на появление в водной среде веществ, представляющих опасность для их жизнедеятельности, и направлено перемещаться по градиенту концентраций этих веществ (хемотаксическая реакция), избегая их вредного воздействия.

Хемотаксическая реакция реализуется при условии наличия стабильного и воспроизводимого градиента концентраций химических веществ. Подобный градиент создается путем наслоения в вертикальной кювете (пробирке) на взвесь инфузорий в загустителе испытуемой водной пробы. При этом в измерительной кювете образуется стабильная граница, сохраняемая в течение всего времени биотестирования. Эта граница раздела не препятствует свободному перемещению инфузорий в предпочтительном для них направлении и при этом предотвращает перемешивание жидкостей из нижней и верхней зон.

После создания в кювете двух зон в течение 30 минут происходит перераспределение инфузорий по зонам. Важная особенность поведенческой реакции инфузорий - массовое перемещение клеток в верхние слои жидкости. В случае, если исследуемая проба не содержит токсических веществ, в кювете будет наблюдаться концентрирование клеток инфузорий в верхней зоне. Наличие в исследуемой пробе токсических веществ приводит к иному характеру перераспределения инфузорий в кювете, а именно, чем выше токсичность пробы, тем меньшая доля инфузорий перемещается в верхнюю зону (исследуемую пробу).

4.2. Критерием токсического действия является значимое различие в числе клеток инфузорий, наблюдаемых в верхней зоне кюветы в пробе, не содержащей токсических веществ (контроль), по сравнению с этим показателем, наблюдаемым в исследуемой пробе (опыт)

4.3. Количественная оценка параметра тест-реакции, характеризующего токсическое действие, производится путем расчета соотношения числа клеток инфузорий, наблюдаемых в контрольной и исследуемой пробе (согласно п.8.1), и выражается в виде безразмерной величины - индекса токсичности (Т).

5. Условия определения

5.1. Определение токсичности по настоящей методике выполняется оператором с квалификацией лаборанта.

5.2. На методику распространяются общие правила техники безопасности при работе с химическими реактивами общего применения и лабораторной аппаратурой (указаны в паспорте на прибор).

5.3. Инфузории работают в интервале температур 10-30 °С при соответствии их свойств требованиям п.2.3.

6. Подготовка к выполнению определения

6.1. Отбор и хранение проб

Общие процедуры отбора проб определены в следующих документах: ИСО 5667/2. Качество воды. Отбор проб. ч.2; ГОСТ 24481-80 . Вода питьевая. Отбор проб.

6.2. Биотестирование проб воды проводят не позднее 6 часов после их отбора. При невозможности проведения анализа в указанный срок пробы воды охлаждают (+4 °С). Не допускается консервирование проб с помощью химических консервантов.

6.3. Необходимый для выполнения анализа (в трех повторностях) объем водной пробы составляет около 10 мл. Для однократного определения достаточно 2 мл.

6.4. При проведении биотестирования температура исследуемой пробы должна соответствовать температуре взвеси тест-объекта. Инфузории не переносят резких перепадов температуры (!).

6.5. При наличии в пробе крупнодисперсных включений, соизмеримых по величине с клеткой инфузории или больших по размеру, необходима фильтрация пробы.

7. Проведение анализов

7.1. Заполнение кювет

В кювету вносят 2,0 мл взвеси инфузорий в рабочей концентрации, предварительно проверенной по двум параметрам: по чувствительности к модельному токсиканту (см.п.2.4.3.2) и по выходу в разбавляющую среду (см.п.2.4.3.1). К взвеси добавляют 0,35 мл 5% раствора ПВС, все тщательно перемешивают, непременно увлажнив стенки кюветы, и наслаивают (например, пипеткой) 1,8 мл анализируемой водной пробы, не допуская перемешивания с нижним слоем. Через 30 минут (продолжительность тест-реакции) последовательно производят определение концентрации инфузорий в верхней зоне кюветы в контрольных () и опытных () пробах. Контрольные и опытные пробы готовят одновременно.

7.2. Измерение концентрации инфузорий на приборе "БИОТЕСТЕР-2"

Подготовленные по п.7.1 кюветы последовательно помещают в кюветный модуль и снимают показания прибора. В приборе "БИОТЕСТЕР-2" предусмотрено три режима работы:

- измерение и индикация результата через каждые 22 с;

- измерение и индикация среднего значения результатов 5 отсчетов (через каждые 110 с);

- измерение и индикация среднего значения результатов 10 отсчетов (через каждые 220 с).

Работа с прибором:

а) установить режим усреднения "1" (горит светодиод над кнопкой, соседние светодиоды погашены);

б) вставить кювету в кюветную нишу, закрыть крышку, нажать кнопку "ПУСК";

в) индикация гаснет, на 12 с (время автоподстройки) загорается светодиод "ОТСЧЕТ", и еще через 22 с на индикационном табло появляется первое значение концентрации в условных единицах. Выдача отсчета сопровождается световым и звуковым сигналом продолжительностью 2 с;

г) в течение 22 с значение предыдущего отсчета сохраняется, этого времени достаточно для регистрации результата.

Если концентрация токсикантов настолько велика, что инфузории практически не выходят в пробу (показания прибора в условных единицах находятся в пределах 000-008), то начинает мигать светодиод "ТРЕВОГА". Это означает, что испытуемую пробу необходимо разбавить до получения на приборе значимых величин. (Не забудьте скорректировать оценку токсичности в соответствии со степенью разбавления исходной пробы).

Последовательность операций при использовании других режимов измерений идентична вышеописанной. Обычно работают в режиме усреднения по 5 показаниям. Контрольные и испытуемые пробы делают в трех повторностях. Значения повторностей усредняют и рассчитывают индекс токсичности по п.8.1.

8.Обработка и оформление результатов

8.1.Оценку токсичности водной пробы производят по относительной разнице количества клеток в верхних зонах кювет с контрольными и анализируемыми пробами.

Индекс токсичности определяется как:

где , - средние показания прибора для контрольных и анализируемых проб соответственно.

Индекс токсичности () - величина безразмерная и может принимать значения от 0 до 1 в соответствии со степенью токсичности анализируемой пробы.

По величине индекса токсичности анализируемые водные пробы классифицируются по степени их загрязнения на 4 группы:

I. Допустимая степень загрязнения ();

II. Умеренная степень загрязнения ();

III. Высокая степень загрязнения (, а также значимые значения , полученные при 2-х, 4-х, 6-кратном разбавлении анализируемой пробы);

IV. Чрезвычайно высокая степень загрязнения (значимые значения , полученные при 8-кратном и свыше разбавлении анализируемой пробы).

8.2. Пример записи результатов измерений

Номер пробы

Пов-
тор-
нос-
ти

Показания прибора I у.е.

Ср.знач. по 5 изме-
рениям , у.е.

Ср.знач. по 3 пов-
торнос-
тям 4 ср.у.е.

Индекс токсичности , у.е.

Контроль среда
Л-Л

Проба 1

[email protected]

Если процедура оплаты на сайте платежной системы не была завершена, денежные
средства с вашего счета списаны НЕ будут и подтверждения оплаты мы не получим.
В этом случае вы можете повторить покупку документа с помощью кнопки справа.

Произошла ошибка

Платеж не был завершен из-за технической ошибки, денежные средства с вашего счета
списаны не были. Попробуйте подождать несколько минут и повторить платеж еще раз.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методы биотестирования природных и сточных вод

1. Основные принципы методов биотестирования и критерии токсичности вод

Биотестирование (биологическое тестирование) - оценка качества объектов окружающей среды (воды и пр.) по ответным реакциям живых организмов, являющихся тест-объектами.

Это широко распространенный экспериментальный методический прием, который представляет собой токсикологический эксперимент. Суть эксперимента заключается в том, что тест-объекты помещают в исследуемую среду и выдерживают (экспонируют) определенное время, в течении которого регистрируют реакции тест-объектов на воздействие этой среды.

Приемы биотестирования широко применяются в различных областях природоохранной деятельности и используются по различным назначениям. Биотестирование является основным методом при разработке нормативов ПДК химических веществ (биотестирование токсичности индивидуальных химических веществ), и, в конечном итоге, при оценке из опасности для окружающей среды и здоровья населения. Таким образом, оценка уровня загрязнения по результатам химического анализа, т.е. интерпретация результатов с точки зрения опасности для окружающей среды, также в значительной степени опирается на данные биотестирования.

Методы биотестирования, будучи биологическими по сути, близки по смыслу получаемых данных к методам химического анализа вод: как и химические методы, они отражают характеристику воздействия на водные биоценозы.

Требования, применяемые к методикам биотестирования:

Чувствительность тест-организмов к достаточно малым концентрациям загрязняющих веществ.

Отсутствие инверсии ответных реакций тест-организмов на разные значения концентрации загрязняющих веществ в пределах тех значений, кот-е отмечены в природных водах;

Возможность получать надежные результаты, метрологическая обеспеченность методик;

Доступность тест-организмов для сбора, простота культивирования и содержания в условиях лаборатории;

Простота выполнения процедуры и технических приемов биотеста;

Низкая себестоимость работ по биотестированию.

Развиваются два основных направления работ по биотестированию:

Подбор методик с использованием гидробионтов, охватывающих основные иерархические структуры водной экосистемы и звенья трофической цепи;

Поиск наиболее чувствительных тест-организмов, которые позволили бы уловить низкий уровень токсичности при обеспеченной гарантии надежности информации.

Для токсикологической оценки загрязнения пресноводных экосистем на основе биотестирования водной среды рекомендовано использовать несколько видов тест-объектов: водоросли, дафнии, цериодафний, бактерии, простейшие, коловратки, рыбы.

Водоросли - основа пищевых цепей во всех природных экосистемах. Наиболее чувствительные организмы к широкой гамме химических веществ от детергентов до НФПР. Отмирание клеток, нарушение скорости роста, изменение процессов фотосинтеза и др. метаболич. процессов. Chlorella vulgaris, Scenedesmus quadricauda, Anabaena, Microcystis, Oscillatoria, Phormidium.

Бактерии - изменение скорости разложения (биодеградации) органических соединений/ Nitrosomonas, Nitrosobacter; изменение метаболических процессов в организме - Escherichia coli (оценка влияния токсиканта на сбраживание глюкозы)

Простейшие. Дафнии. ДДТ, (ГХЦГ)гексахлорциклогексан, ТЯЖЕЛЫЕ металлы (медь-цинк-кадмий-хром), биогенные элементы. Daphnia magna.

Коловратки

Рыбы. Гуппи (Poecillia reticulata) - металлы, пестициды; данио (Brachidanio rerio).

Рыбы природных вод. Высокочувствительные: - лососевые (форель), шиповка, пескарь, плотва, голец, судак, верховка; среднечувствительные: окунь, красноперка, лещь, гольян, карп, уклея.

Токсичность вод

О наличии токсичности судят по проявлениям негативных эффектов у тест-объектов, которые считаются показателями токсичности.

Среди показателей токсичности выделяют: общебиологические, физиологические, биохимические, химические, биофизические, и т.д.

Показателем токсичности является тест-реакция, изменения которой регистрируют в ходе токсикологического эксперимента.

Следует заметить, что под токсикологическими (биотестовыми) показателями в экологической и водной токсикологии понимают показатели биотестирования на различных тест-объектах. В тоже время в санитарно-гигиеническом нормировании под токсикологическими показателями понимают концентрации токсичных химических веществ (например, в нормировании питьевой воды они характеризуют ее безвредность).

При биотестировании проб природной воды обычно ставят два вопроса: - токсична ли проба природной воды; - какова степень токсичности, если таковая имеется?

В результате биотестирования проб на основе регистрации показателей токсичности делают оценку токсичности по критериям, установленным для каждого биообъекта. Результаты биотестирования опытной пробы с исследуемого участка сравнивают с контрольной, заведомо нетоксичной пробой и по разнице в контроле и опыте судят о наличии токсичности.

При этом эффекты воздействия делят на острые и хронические. Их обозначают как острое и хроническое токсическое действие или как острую и хроническую токсичность (ОТД и ХТД). Эти термины и используют для выражения результатов биотестирования.

Острое токсическое действие - воздействие, вызывающее быструю ответную реакцию тест-объекта. Его чаще всего измеряют по тест-реакции «выживаемость» за относительно короткий период времени.

Хроническое токсическое действие - воздействие, вызывающее ответную реакцию тест-объекта, проявляющуюся в течение относительно долгого периода времени. Измеряют по тест-реакциям: выживаемость, плодовитость, изменение роста и т.п.

Реакция тест-объектов на токсическое воздействие зависит от интенсивности или продолжительности воздействия. По результатам биотестирования находят количественную зависимость между величиной воздействия и реакцией тест-объектов.

Реакция организмов на воздействие токсических химических веществ представляет собой комплекс взаимосвязанных эволюционно сформировавшихся реакций, направленных на сохранение постоянства внутренней среды организма и в конечном итоге на выживание.

Выявлены определенные закономерности реакций организмов на токсические воздействия. В общем виде воздействие токсического вещества на организм описывается двумя основными параметрами: концентрацией и временем воздействия (экспозицией). Именно эти параметры определяют степень влияния токсичного вещества на организм.

Экспозиция - период, в течение которого организм находится под воздействием исследуемого фактора, в частности химического вещества. В зависимости от экспозиции различают острое или хроническое токсическое воздействие.

Результат токсического воздействия обычно называют эффектом токсического воздействия. Для описания зависимости между эффектом воздействия токсического вещества на организм и его концентрацией предложены различные функции, например, формула Хабера:

Где Е - эффект (результат) воздействия;

С - концентрация воздействующего вещества;

Т - время воздействия (экспозиция).

Е - представляет собой любой результат воздействия (гибель тест-объектов), а величины С и Т - могут быть выражены в соответствующих единицах измерения.

Как видно из формулы Хабера, между эффектом временем воздействия концентрацией имеется прямая функциональная связь: эффект будет тем большим, чем больше величина воздействия (конц-ция вещ-ва) и/или его продолжительность.

Формула Хабера позволяет сравнивать биологические эффекты различных химических веществ с помощью анализа их конц-ции или экспозиции. Отличия по какому-либо из этих величин отражают отличия в чувствительности организмов к токсическому воздействию.

При малых конц-циях или экспозициях эффект воздействия проявляется в популяции у небольшого числа тест-объектов, которые оказываются наиболее чувствительными, т.е. наименее устойчивыми к воздействию. По мере увеличения концентрации или экспозиции число устойчивых организмов падает, и в конце концов у всех (или почти у всех) организмов удается зарегистрировать четко выраженные эффекты токсического воздействия. В ходе токсикологического эксперимента находят зависимость отклика тест-объектов от величины или времени воздействия.

Параметры токсичности химического воздействия:

Летальная концентрация (ЛК50) - концентрация токсиканта, вызывающая гибель 50% тест-организмов за определенное время (чем ниже ЛК50, тем выше токсичность химического вещества или воды)

Максимальная недействующая концентрация - наивысшая измеренная концентрация химического вещества (тестируемой воды), не вызывающая наблюдаемого химического воздействия (чем ниже МНК, тем выше токсичность хим. вещ-ва или сточной воды).

Не все организмы одинаково реагируют на одно и то же воздействие. Реакция зависит от чувствительности к возд-вию.

Чувствительность организма к токсичному веществу - это совокупность реакций на его воздействие, характеризующих степень и скорость реагирования организма. Характеризуется такими показателями, как время начала проявления отклика (реакции) или конц-ция токсического вещ-ва, при которой проявляется реакция; она существенно отличается не только у разных видов, но и у разных особей одного вида.

Согласно ряду чувствительности, разработанному С.А. Патиным (1988), тест объекты можно расположить следующм образом:

Рыбы-зоопланктон-зообентос-фитопланктон-бактерии-простейшие-макрофиты.

Существуют и другие ряды чувствительности.

Например, при биотестировании вод целлюлозно-бумажных предприятий: водоросли-бактерии-рыбы (по уменьшению чувствительности).

Факторы, влияющие на биотестирование:

Факторы, влияющие на тест-организмы (экспозиция; условия культивирования, в природе - условия жизни растений и животных; возрастные особенности, сезон года, обеспечение тест-организмов пищей, температура (пессимум и оптимум), освещенность);

Факторы, определяющие физико-химические свойства тестируемой природной воды, от которых зависит ее токсичность для тест-организмов (свежесть пробы, наличие в ней взвешенных частиц).

2. Методы биотестирования на различных группах организмов для оценки качества природных и сточных вод

Рассмотрим основные методики определения острого токсического действия вод при кратковременном биотестировании на ракообразных, водорослях и инфузориях; метод определения хронического токсического действия вод на водорослях.

Способы обработки и оценки результатов биотестирования основаны на стандартных и широко используемых в отечественной и международной практике методах статистической обработки экспериментальных данных.

Прежде чем проводить эксперименты по биотестированию, нужно вырастить культуру тест-организмов.

Биотестирование на ракообразных

Методика предназначена для определения острой токсичности природной и сточной воды, сбрасываемой в водоемы.

1. Принципы культивирования рачков Daphnia magna Straus и Ceriodaphnia affinis Lilljeborg

Период созревания Daphnia magna до вымета молоди при оптимальной температуре и хорошем питании занимает 5-10 суток. Продолжительность жизни 110-150 суток, при температурах свыше 25 °С она может сокращаться до 25 суток.

При оптимальных условиях содержания партеногенетические поколения следуют одно за другим каждые 3-4 суток. У молодых дафний число яиц в кладке 10-15, затем оно возрастает до 30-40 и более, снижаясь до 3-8 и до 0 за 2-3 суток до смерти.

Культуру дафний выращивают в термостатируемом при 18-22 °С люминостате (освещенность 400-600 люкс, продолжительность светового дня 12-14 часов). Опыты по биотестированию вод желательно проводить в том же люминостате.

Для получения исходного материала для биотестирования 30-40 самок с выводковыми камерами, полными яиц или зародышей, за 1 сутки до биотестирования пересаживают в емкости объемом 0,5-2 л. После появления молоди их отделяют от взрослых особей с помощью капроновых сит с разным диаметром пор.

Принципы культивирования цериодафний аналогичны описанным для дафний. Следует помнить, что цериодафнии более требовательны к содержанию кислорода в воде (не менее 5 мг/л), оптимальная температура культивирования 23-27°С. Период созревания рачков от рождения до момента вымета молоди короче, чем у дафний - от 4 до 5 суток.

При биотестировании важно учитывать следующие моменты:

Молодь рачков в 4-5 раз более чувствительна к действию токсикантов, чем взрослые особи.

Кормление рачков во время острого опыта уменьшает токсичность примерно в 4 раза.

В мягкой воде токсичность веществ повышается. Ионы магния обычно уменьшают токсичность солей, ионы кальция - снижают токсичность.

Присутствие комплексообразующих веществ (гуминовые кислоты, аминокислоты и т.п.) увеличивает накопление токсикантов, но снижает их токсичность.

Дефицит кислорода в воде ускоряет накопление токсических веществ в водной среде.

Солнечный свет увеличивает токсичность в основном за счет возрастания количества свободных радикалов.

Определение устойчивости Daphnia Magna Straus к бихромату калия

Прежде всего необходимо оценить пригодность лабораторной культуры дафний для последующего биотестирования вод. Эталонным токсикантом служит бихромат калия.

Стакан емкостью 100-250 мл (21 штука).

Пипетки мерные на 1, 10, 25 мл 2-го класса точности (по 1 штуке). Колба для разбавляющей (контрольной) воды (РВ) емкостью 3 л. Мерные колбы на 100 мл (1 шт.), на 250 мл (1 шт.), на 500 мл (2 шт.), на 1000 мл (1 шт.).

210 рачков в возрасте 4-24 часа. Разница в возрасте особей не должна превышать 4 часов.

Приготовить 100 мл 0,1% раствора К 2 Сr 2 О 7 (1000 мг/л).

Для этого 0,1 г просушенного К 2 Сr 2 О 7 растворить в 100 мл дистиллированной воды.

Расставить 21 стакан с надписями по следующей схеме:

К1 0,25 мг/л 0,5 мг/л 0,75 мг/л 1 мг/л 2 мг/л 3 мг/л

К2 0,25 мг/л 0,5 мг/л 0,75 мг/л 1 мг/л 2 мг/л 3 мг/л

КЗ 0,25 мг/л 0,5 мг/л 0,75 мг/л 1 мг/л 2 мг/л 3 мг/л

Посадка рачков

Во все стаканы с растворами посадить по 10 рачков в возрасте строго 4-24 часа. Посадку производить с помощью микропипеток со съемными пластиковыми наконечниками. Концы наконечников предварительно необходимо обрезать под величину дафнии одно-двухдневки.

Эксперимент

Подсчет выживших рачков производят визуально через 24 часа. Во время опыта рачков не кормят. Смертность рачков в контроле не должна превышать 10%. Результаты заносят в протокол опыта.

3. Определение токсичности сточной (природной) воды на Daphnia magna

Материалы

Стаканы емкостью 150-250 мл (8-16 штук).

Колба для разбавляющей (контрольной) воды емкостью 3 л.

Мерные колбы на 100 мл (1 шт.), 1 л (1 шт.).

Мерный цилиндр или мерный стакан на 150-200 мл.

От 40 до 80 рачков в возрасте 4-24 часа. Разница в возрасте особей не должна превышать 4 часов.

Подготовка опыта

Расставить 16 стаканов с надписями по следующей схеме:

К1 Ст.вода б/р N 1 Ст.вода 1:10 N 5 Ст.вода 1:100 N 9

К2 Ст.вода б/р N 2 Ст.вода 1:10 N 6 Ст.вода 1:100 N 10

КЗ Ст.вода б/р N 3 Ст.вода 1:10 N 7 Ст.вода 1:100 N 11

К4 Ст.вода б/р N 4 Ст.вода 1:10 N 8 Ст.вода 1:100 N 12

Разлить по стаканам контрольную (разбавляющая вода) и испытуемую воду (ст.вода) по 150 мл на стакан:

К1-К4 - 600 мл разбавляющей воды (РВ),

Ст.вода б/р (без разбавления) - 600 мл (4 х 150 мл).

Ст.вода 1:10 - 100 мл Ст.воды б/р + 900 мл РВ = 1 л Ст.вода 1:10.

Ст.вода 1:100 - 100 мл Ст.воды 1:10 + 900 мл РВ = 1 л Ст.вода 1:100

Стаканы с растворами расставить в люминостате.

В обязательном порядке скорректировать рН проб до 6,5-8,5 с помощью растворов NaOH или НСl, если они не соответствуют указанным выше нормативам.

Насыщенность тестируемых проб кислородом также должна лежать в указанных рамках.

Посадка рачков

Во все стаканы посадить по 5 рачков в возрасте строго 4-24 часа.

Эксперимент

Подсчет погибших рачков производят визуально через 1, 6, 24, 48, 72, 96 часов (окончание определения острой токсичности). Смертность рачков в контроле не должна превышать 10%.

Результаты заносят в протокол опыта.

Биотестирование прекращают, если в любой период времени в опыте гибнет 50% и более особей.

Если А >= 50%, то тестируемая вода (опыт) остротоксична.

Если А < 50%, то тестируемая вода не оказывает острого токсического действия.

Для более точного определения острой токсичности строят график, где по оси абсцисс (ось X) откладывают время в часах, а по оси ординат (ось Y) смертность в процентах к контролю (А). Из графика находят ЛТ50 - время, в течении которого погибает 50% дафний.

Определение токсичности сточной (природной) воды на Ceriodaphnia affinis

Материалы

Пробирки емкостью 20 мл (20-40 штук).

Колба для разбавляющей (контрольной) воды емкостью 1 л.

От 40 до 80 рачков в возрасте 0,1-8 часов. Разница в возрасте рачков не должна превышать 4 часов.

Подготовка опыта

Расставить пробирки по 10 штук в ряду по следующей схеме:

К1 Ст.вода б/р N 1 Ст.вода 1:10 N 1 Ст.вода 1:100 N 1

К2 Ст.вода б/р N 2 Ст.вода 1:10 N 2 Ст.вода 1:100 N 2

К3 Ст.вода б/р N 3 Ст.вода 1:10 N 3 Ст.вода 1:100 N 3

К4 Ст.вода б/р N 4 Ст.вода 1:10 N 4 Ст.вода 1:100 N 4

К5 Ст.вода б/р N 5 Ст.вода 1:10 N 5 Ст.вода 1:100 N 5

К6 Ст.вода б/р N 6 Ст.вода 1:10 N 6 Ст.вода 1:100 N 6

К7 Ст.вода б/р N 7 Ст.вода 1:10 N 7 Ст.вода 1:100 N 7

К8 Ст.вода б/р N 8 Ст.вода 1:10 N 8 Ст.вода 1:100 N 8

К9 Ст.вода б/р N 9 Ст.вода 1:10 N 9 Ст.вода 1:100 N 9

К10 Ст.вода б/р N 10 Ст.вода 1:10 N 10 Ст.вода 1:100 N 10

Разлить по пробиркам контрольную (разбавляющая вода) и сточную воду (Ст.вода) по 15 мл:

К1-К10 - 150 мл разбавляющей воды (РВ).

Сточная вода б/р (без разбавления) - 150 мл (10 * 15 мл).

Сточная вода 1:10 - 25 мл Ст.воды б/р + 225 мл РВ = 250 мл Ст.вода 1:10.

Сточная вода 1:100 - 25 мл Ст.воды 1:10 + 225 мл РВ = 250 мл Ст.вода 1:100.

Пробирки с растворами расставить в люминостате.

Произвести замеры температуры в люминостате (норма 23-27°С), рН растворов (норма 6,5-8,5), концентрация растворенного кислорода (норма перед началом опыта 6 мг/л, в конце опыта - не менее 4 мг/л).

В обязательном порядке скорректировать рН проб до 6,5-8,5 с помощью растворов NaOH или НСl, если они не соответствуют указанным выше нормативам. Насыщенность тестируемых проб кислородом также должна лежать в указанных рамках.

Режим освещения в люминостате - 12-часовой с интенсивностью 400-600 люкс.

Посадка рачков

Во все пробирки посадить по 1 рачку в возрасте 0,1-8 часов. Разница в возрасте рачков не должна превышать 4 часа.

Эксперимент

Подсчет погибших рачков производят визуально через 1, 6, 24, 48 часов (окончание определения острой токсичности). Во время опыта рачков не кормят. Результаты заносят в протокол опыта.

Обработка результатов выполняется аналогична предыдущим.

4. Биотестирование с использованием водоросли

Scenedesmus quadricauda

Методика предназначена для определения токсичности природных и сточных вод.

Общие принципы культивирования микроводорослей

Эффективное культивирование одноклеточных зеленых водорослей в лаборатории определяется в основном наличием минеральных элементов в питательной среде, достаточно интенсивным освещением (2000-3000 люкс) и определенной температурой (18-20 °С).

Лучшей средой для выращивания зеленых водорослей для токсикологических является питательная среда Успенского N 1, которая содержит более низкую общую концентрацию солей.

Все манипуляции со средой Успенского N 1 при работе с водорослью Scenedesmus проводятся при строгом соблюдении условий стерильности.

Недопустимым является совместное культивирование данной водоросли с хлореллой в одном люминостате (хлорелла быстро засоряет и подавляет культуру сценедесмус).

Продолжительность опытов по выявлению токсичности вод может быть 4, 7, 14 и более дней в зависимости от поставленных задач. Максимальное накопление токсиканта в клетках водорослей отмечается, обычно, к исходу 3-4 суток, поэтому чаще всего определение острой токсичности ограничивают 4 сутками.

Если в результате биотестирования на острую токсичность выявлена достоверная стимуляция роста водорослей, то для окончательного суждения о токсичности пробы необходимо ставить хронический эксперимент (до 14 суток).

Достоверная стимуляция роста водорослей свидетельствует о наличии эвтрофирующего загрязнения, а достоверное угнетение роста водорослей - о наличии токсического загрязнения.

Подготовка культуры

В опыте использовать 5-10 суточную культуру, находящуюся в экспоненциальной фазе роста.

Перед посевом культуру сгущают одним из трех способов: - отстаиванием 2-3 дня, центрифугированием, фильтрованием через мембранный фильтр N 4 или фильтровальную бумагу с синей лентой. Полученная суспензия (концентрат) клеток используется для последующего посева.

Производится в большую опытную колбу емкостью 1,5 л, в случае биотестирования в колбах (по 100 мл) или в колбу емкостью 150 мл при биотестировании в пенициллиновых пузырьках (по 10 мл). Обычно требуется примерно 30 мкл суспензии на 30 мл воды.

В опытных колбах после посева должно быть около 200-300 тысяч клеток водорослей в 1 мл (не более 500 тысяч/мл) - едва заметное зеленоватое окрашивание на белом фоне.

Из большой колбы произвести разлив культуры по колбам (3 повторности по 100 мл) или пенициллиновым пузырькам (3 повторности по 10 мл).

5. Оценка результатов опыта по определению устойчивости культуры к бихромату калия

Подсчет производят с помощью микроскопа (например, типа "Биолам") при 80-100 кратном увеличении.

Для подсчета численности клеток используют счетную камеру Горяева или Фукс-Розенталя. Камеру и относящееся к ней покровное стекло обезжиривают, покровным стеклом накрывают камеру и притирают его до образования радужных колец интерференции. Из каждой колбы пипеткой наносят по одной капле тщательно перемешанной суспензии на верхний и нижний края покровного стекла. Камеру заполняют так, чтобы не образовывались пузырьки воздуха, избыток суспензии вытесняется по канавкам. Просматривают 16 квадратов по диагонали или все поле камеры в случае малой численности водорослей (при одном заполнении камеры просчитывают не менее 50 клеток).

Из каждой колбы просматривают не менее трех проб.

Оценка токсического действия химического соединения или тестируемой воды делается на основании достоверности различий между показателями численности клеток водорослей в контроле и в опыте.

При этом вычисляют:

а) средние арифметические величины численности клеток - Xi и X (из двух и шести подсчетов, соответственно).

б) численность клеток в процентах от контроля. Сумма (X - Xi)

в) среднее квадратичное отклонение (б):

где n - количество повторностей; в данном случае (см. табл.3.1) n = 3;

в) ошибку среднего арифметического (X): S = б/корень из n;

г) Td - критерий достоверности различий двух сравниваемых величин:

где Xk и Хо - сравниваемые средние величины (в контроле и опыте),

Sk - So - квадраты ошибок средних в контроле и опыте.

Td рассчитывают на каждые сутки и сравнивают с табличной величиной Tst - стандартным значением критерия Стьюдента.

Принимают уровень значимости Р = 0,05 и степень свободы (n1 + n2 - 2), т.е. (3 + 3 - 2) = 4.

Tst при степени свободы 4 равно 2,78.

Если Td больше или равно Tst, то различие между контролем и опытом достоверно - тестируемая вода загрязнена (токсическое или эвтрофирующее загрязнение)

Если Td меньше Tst, то различие между контролем и опытом не достоверно - тестируемая вода не загрязнена.

Для расчетов Td можно использовать калькуляторы типа МК-51 и МК-71, а также компьютерные электронные таблицы (например, программу "Сигма" ЦСИАК), что значительно ускоряет работу.

Для графического представления результатов биотестирования по оси абсцисс откладывают время в сутках, а по оси ординат либо число клеток водорослей в 1 мл, либо число клеток водорослей в процентах от контроля.

6. Определение устойчивости Scenedesmus quadricauda к действию бихромата калия

Добавить последовательно в 30 мл дистиллированной воды (контроль) 30 мкл KNO 3 , 30 мкл MgSO 4 , 30 мкл Ca(NO 3) 2 , 30 мкл КН 2 РО 4 , 30 мкл К 2 СО 3 .

Хронический опыт (в пузырьках)

На 7-е сутки биотестирования проводят смену контрольной и тестируемой воды в стерильных условиях. При этом в новую партию пузырьков наливают по 7,5 мл контрольной и тестируемой воды. Затем в пузырьки добавляют по 0,01 мл (10 мкл) каждого из 5 маточных растворов солей и по 2,5 мл старой культуры из пузырьков, в которых проводилось биотестирование в остром опыте. Подсчет численности клеток проводят на 7-е, 10-е и 14-е сутки.

На практике бывает удобно использовать таблицу оценки результатов биотестирования по 5-бальной шкале (таблица 3.3).

Необходимо помнить, что увеличение биомассы водорослей может быть связано с наличием эвтрофирующих загрязнений в испытуемой воде, в этом случае о наличии токсического эффекта можно судить после испытания на нескольких тест-объектах.

7. Биотестирование на инфузориях

В основу метода положен один из вариантов определения острой токсичности воды по выживаемости инфузорий Paramecium caudatum.

Используется:

Для определения токсичности сточных вод, поступающих на биологические очистные сооружения, что позволяет проводить технологическую корректировку режима подготовки и очистки сточных вод;

Для определения токсичности локальных потоков сточных вод, что позволяет выяснять их взаимодействие, определять вклад каждого потока в токсичность сточных вод отдельного предприятия, суммарную токсичность сточных вод, поступающих на биологические очистные сооружения;

Для определения токсичности водных растворов отдельных веществ и их смеси.

Принцип методики

Методика определения острой летальной токсичности сточной воды по выживаемости инфузорий основана на установлении количества погибших или обездвиженных особей после экспозиции в тестируемой воде. Критерием острой летальной токсичности является гибель или обездвиживание 50% и более особей в течение 1 часа в тестируемой воде по сравнению с их исходным количеством.

Тестовый организм

В качестве тест-объекта используют лабораторную монокультуру Paramecium caudatum Ehrenberg.

Paramecium caudatum - одноклеточные организмы размером 180-300 мкм. Тело сигарообразной или веретенообразной формы, покрытое плотной оболочкой (пелликулой).

Paramecium caudatum - массовый вид в пресной воде с высоким содержанием органических веществ. В сточной воде является часто основным видом, поли-альфа-мезосапроб. Простейшие, в том числе ресничные инфузории, составляют основную часть микрофауны активного ила. Они участвуют в освобождении очищаемой воды от взвешенных бактериальных клеток и от рыхлых, плохо оседающих бактериальных агломератов, способствуя тем самым повышению эффективности очистки.

Выделение и культивирование

Выделение из активного ила. Наиболее подвижную и крупную особь отлавливают из пробы активного ила очистных сооружений и переносят в микроаквариум со стерильной водопроводной водой.

Путем последовательного переноса этой особи из лунки в лунку добиваются отделения ее от других простейших и цист. Затем помещают отмытую инфузорию в пробирку со средой культивирования.

Через 7-8 суток из полученной таким образом монокультуры одну наиболее крупную и подвижную особь вновь переносят в свежую среду.

Спустя 8-10 суток культуру можно использовать для определения токсичности.

Культивирование инфузорий на молоке. Культуру парамеций выращивают на дехлорированной водопроводной воде, которую добавляют разбавленное в 20 раз такой же водой пастеризованное молоко. Пересевают культуру инфузорий один раз в месяц (при необходимости один раз в три недели).

Материалы и оборудование

Подсчет Paramecium caudatum производят с помощью бинокулярного микроскопа МБС-9, МБС-10 или иного, обеспечивающего 8-24 кратное увеличение. Конструкция микроаквариумов из прозрачного органического стекла приведена на рис.1. Для разбавления и внесения одинакового количества исследуемой пробы используют стандартные стеклянные пипетки.

Биотестирование проб воды проводят не позднее 6 часов после их отбора, при невозможности проведения анализа в указанный срок пробы воды охлаждают (+4°С).

Не допускается консервирование проб с помощью химических консервантов.

В качестве контрольной используют водопроводную воду, которую дехлорируют путем отстаивания и аэрирования с помощью микрокомпрессора в течение 7 суток.

Для определения токсичности отдельных веществ или их смеси из них готовят растворы путем добавления определенных количеств маточного раствора, исследуемого(ых) вещества(в) в водопроводную дехлорированную воду. Маточные растворы готовят на дистиллированной воде.

При проведении биотестирования температура исследуемой пробы должна соответствовать температуре культуры.

При наличии в пробе крупнодисперсных взвесей необходима фильтрация.

При проведении биотестирования значения рН тестируемых растворов должно находиться в интервале от 6,5 до 7,6.

Биотестирование проводят в помещении, не содержащем вредных паров и газов, при рассеянном свете и температуре воздуха 18-28°С.

Проведение биотестирования

Для биотестирования неразбавленной сточной воды или ее разбавлений, а также растворов отдельных токсических веществ (смеси веществ) используют микроаквариум с лунками, который помещают на предметный столик стереомикроскопа.

Одну из лунок заполняют культурой инфузорий с помощью капиллярной пипетки.

В свободные лунки капиллярной пипеткой рассаживают по 10-12 особей в каждую лунку, так чтобы на одну пробу тестируемой воды приходилось не менее 30 инфузорий в трех лунках (трехкратная повторность).

При посадке тест-объекта количество культуральной жидкости в лунке не должно превышать 0,02 мл.

Три лунки используют в качестве контрольных.

После посадки инфузорий наливают в контрольные лунки по 0,3 мл дехлорированной водопроводной воды, в опытные - по 0,3 мл пробы тестируемой воды. Отмечают время начала биотестирования и подсчитывают под микроскопом количество особей в каждой лунке.

Микроаквариум с заполненными лунками помещают в чашку Петри, на дно которой кладут фильтровальную бумагу, смоченную водой, чтобы не испарялось содержимое лунок, и выдерживают в течение 1 часа при температуре 22-24°С. По истечении этого времени производят подсчет выживших особей под микроскопом. Выжившими считаются инфузории, которые свободно перемещаются в толще воды. Обездвиженных особей относят к погибшим. Результаты подсчета записывают в рабочий журнал.

Результаты биотестирования считаются правильными и учитываются, если гибель инфузорий в контрольных лунках не превышала 10%.

После подсчета особей в каждой из трех лунок находят среднее арифметическое количество инфузорий, выживших в тестируемой воде.

Тестируемую воду оценивают как оказывающую острое летальное действие, если в течение 1 ч в ней гибнет 50% и более инфузорий.

При определении острой летальной токсичности разбавлений пробы сточной воды или водного раствора отдельного вещества (смеси) устанавливают среднюю летальную кратность разбавлений (среднюю летальную концентрацию), вызывающую гибель 50% тест-объектов в течение 1 часа - ЛКр 50 - 1 ч (ЛК 50 - 1 ч).

Для построения графика с целью расчета ЛКр 50 - 1 ч (ЛК 50 - 1 ч) тест-параметр выражают в условных единицах - пробитах, а кратность разбавления (концентрацию) - в логарифмических величинах.

На оси абсцисс откладывают логарифмы концентраций кратности разбавлений сточной воды (концентраций вещества), на оси ординат величины тест-параметра в пробитах. Полученные точки соединяют прямой.

Из точки на оси ординат, соответствующей 50% гибели тест-объекта, проводят линию, параллельную оси абсцисс до пересечения с линией графика.

Из точки их пересечения опускают перпендикуляр на ось абсцисс и находят логарифмы ЛКР 50 - 1 ч.

Величину найденного логарифма переводят в величину кратности разбавления (концентрацию, выраженную в мг/л вещества).

Результаты биотестирования представляют в виде протокола.

После проведения биотестирования микроаквариумы промывают водой (температура не выше 40°С), протирают ваткой, смоченной в спирте, промывают дистиллированной водой.

Оценка токсичности воды с использованием биотеста на водорослях.

По формуле рассчитаем коэффициент прироста численности водорослей за 96 ч (4 сут).

M= 10 3 ,

где M - численность клеток водорослей, тыс.кл./мл;

m - число подсчитанных клеток;

n - число просчитанных маленьких квадратов камеры;

V - объем части камеры, соответствующей площади маленького квадрата, мл.

8. Оценка токсичности воды с использованием экспресс-биотеста на коловратках

Для определения возможного острого токсического действия исследуемой воды проводим эксспресное биотестирование на массовой культуре коловраток.

Для оценки токсического действия исследуемой воды используем средние данные о СОС (показатель скорости осветления среды). Рассчитаем СОС для опыта по формуле (2).

биотестирование вода токсичность калий

СОС =[(C 0 - C t)/(C 0 N t)]V,

где СОС - показатель скорости осветления среды, мкл/(экз. . мин);

C 0 и C t - число клеток водорослей в одном большом квадрате камеры Горяева в начале и конце биотестирования соответственно;

N - число коловраток в микроаквариуме;

t - время биотестирования, мин;

V - объем воды в микроакварему, мкл.

Литература

1. Бакаева Е.Н., Никаноров А.М. Гидробионты в оценке токсичности вод суши. М.: Наука, 2006. 257 с.

2. Бакаева Е.Н. Определение токсичности водных сред. Методические рекомендации. Ростов-на-Дону: Эверест 1999. 48 с.

4. Никаноров А.М., Хоружая Т.А., Бражникова Л.В., Жулидов А.В. Мониторинг качества вод: оценка токсичности. - С-Пб.: Гидрометеоиздат, 2000, с. 10- 15, 39-42.

5. Бакаева Е.Н. Эколого-биологические основы жизнедеятельности коловраток в культуре. Ростов-на-Дону: СКНЦ ВШ, 1999. 51 с.

6. Бакаева Е.Н. Возможность обеспечения гарантий качества информации с использованием методик биотестирования на коловратках // Научная мысль Кавказа. 1999 № 5. С. 26-36

7. Бакаева Е.Н., Макаров Э.В. Эколого-биологические основы жизнедеятельности коловраток в норме и в условиях антропогенной нагрузки. Ростов-на-Дону: СКНЦ ВШ, 1999. 206 с.

9. Никаноров А.М., Хоружая Т.А., Бражникова Л.В., Жулидов А.В. Мониторинг качества вод: оценка токсичности. - С-Пб.: Гидрометеоиздат, 2000, С. 16-39.

Размещено на Allbest.ru

...

Подобные документы

    Методы биоиндикации по водорослям и биотестирования по Lepidium sativum L. Видовой состав водорослей и цианобактерий в сточных водах МУП "Уфаводоканал". Исследование количественного развития водорослей и цианобактерий в загрязненной и очищенной воде.

    дипломная работа , добавлен 09.06.2014

    Классификация сточных вод и методы их очистки. Качественный и количественный учет водорослей и цианобактерий. Методика определения токсичности воды по показателям кресс-салата (Lepidium sativum L.). Биотетстирование сточных вод МУП "Уфаводоканал".

    дипломная работа , добавлен 06.06.2014

    Состав сточных вод пищевой промышленности. Оценка влияния сточных вод пищевой промышленности на состояние природных вод, на животный мир водоемов. Правовые основы и методы обеспечения природоохранного законодательства в области охраны природных вод.

    дипломная работа , добавлен 10.08.2010

    Влияние воды и растворенных в ней веществ на организм человека. Санитарно-токсикологические и органолептические показатели вредности питьевой воды. Современные технологии и методы очистки природных и сточных вод, оценка их практической эффективности.

    курсовая работа , добавлен 03.01.2013

    Особенности использования методов биотестирования и биоиндикации для мониторинга состояния окружающей среды. Контроль качества природных и сточных вод на биоиндикаторе Daphnia magna Strauss. Чувствительность индикатора к различным химическим препаратам.

    дипломная работа , добавлен 06.10.2009

    Предназначение и основные методы биологической очитки воды. Важность качественной очистки сточных вод для охраны природных водоемов. Деградация органических веществ микроорганизмами в аэробных и анаэробных условиях, оценка преимуществ данного метода.

    реферат , добавлен 14.11.2010

    Повторное использование сточных вод как гигиеническая проблема. Биологическое и химическое загрязнение сточных вод. Методы обезвреживания сточных вод и проблемы безопасности использования восстановленной воды. Экологическая оценка применения осадка.

    курсовая работа , добавлен 27.12.2009

    Проблема обращения с отходами производства и потребления. Исследование методик проведения биотестирования. Оценка тест-объектов. Целесообразность установления класса опасности отходов методом биотестирования для ЗАО "Тролза" с экономической точки зрения.

    презентация , добавлен 21.06.2012

    Источники загрязнения внутренних водоемов. Методы очистки сточных вод. Выбор технологической схемы очистки сточных вод. Физико-химические методы очистки сточных вод с применением коагулянтов. Отделение взвешенных частиц от воды.

    реферат , добавлен 05.12.2003

    Очистка и обесцвечивание природной воды коагулянтами и флокулянтами. Условия применения флокулянтов для очистки воды. Методы определения показателей качества питьевой воды. Исследование флоккулирующих свойств новых сополимеров акриламида в воде.

Введение

Многие известные заболевания человека имеют соответствие в генетическом коде плодовой мушки. Исследования на дрозофиле помогают понять фундаментальные биологические процессы, которые непосредственно связаны с человеком и его здоровьем. Они используются в моделировании некоторых заболеваний человека, например, таких как, болезни Паркинсона, Хантингтона и Альцгеймера, а также для изучения механизмов, которые лежат в основе рака, диабета, иммунитета, наркотической зависимости и многих других.

Drosophila melanogaster широко используется и для оценки качества окружающей среды. Так же она является генетической моделью при исследованиях насекомых, которые могут переносить опасные инфекционные болезни человека (Например, Culex pipiens - Вирус Западного Нила, Anopheles gambiae - малярию, Aedes aegypu - лихорадку Денге). Результаты исследований, полученные на дрозофиле, также дают ключ к пониманию генетических процессов, выявляемых при изучении важных для сельского хозяйства насекомых, таких как пчелы и тутовый шелкопряд, и насекомых - вредителей, к которым относится саранча и многие виды жуков и тлей.

Актуальность темы дипломной работы состоит в том, что Drosophila melanogaster широко используется и имеет огромное значение в жизни человека. Но во время ее культивирования и использования в исследованиях можно столкнуться с рядом проблем, которые необходимо изучать для облегчения работы с ней. Кроме того, существует мало литературы по методам ее культивирования.

Объект исследования - методика культивирования и использования Drosophila melanogaster в биотестировании.

Предмет исследования - эффективность методики.

Цель работы - разработать методы оптимизации использования Drosophila melanogaster в целях биотестирования.

Для того чтобы достигнуть поставленной цели были поставлены следующие задачи:

1. Выделить проблемы, связанные с биотестированием Drosophila melanogaster.

2. Найти подходы к реализации решения проблем.

3. Экспериментальным путем установить эффективность собственных и известных из литературы путей повышения эффективности использования Drosophila melanogaster как тест - объекта.

Биотестирование, как метод экологического исследования

Суть биотестирования и предъявляемые к его методам требования

молекулярный генетический дрозофила биотестирование

Биотестирование -- это такая процедура установления токсичности среды, при которой специальные тест - объекты информируют об опасности, при этом не зависят от того, какие вещества и в каком сочетании вызывают изменения жизненно важных функций [Ляшенко, 2012].

Определение характера и степени токсичности тестируемой среды и является целью биотестирования.

Само биотестирование основано на регистрации биологически важных показателей, так называемых тест - функций, исследуемых тест - объектов. После регистрации этих показателей производиться оценка их состояния в соответствии с выбранным критерием токсичности. В свою очередь тест - функции бывают биологические и физиологические. К биологическим функциям относятся выживаемость, плодовитость, размножение и качество потомства, а к физиологическим - дыхание, показатели крови, активность питания, обмен веществ [Ляшенко, 2012].

Тест - объектами (или иначе тест - организмами) называют такие биологические объекты, которые используют для оценки токсичности химических веществ. Проявляющийся токсический эффект регистрируют и оценивают в эксперименте.

Биотестирование в отличие от аналитических методов подразумевает слежение за антропогенными и природными процессами в биологических средах, которые включают всю совокупность взаимодействия агентов внешней среды с живым, в том числе и такие как выяснение ответной реакции биосред на антропогенные и природные воздействия [Иваныкина, 2010]. Такими ответами могут служить реакции на стресс - факторы. Методы имеют много преимуществ. Например, они более информативны для определения прямой реакции экосистемы на антропогенное воздействие. С помощью данных подходов в экологическом мониторинге можно получать объективную, а также количественную оценку процессов регенерирования объектов окружающей среды. Можно также, благодаря этим методам, оценить эффективность мероприятий по охране природы [Балакирев, 2013]. Также еще одним достоинством метода является определение общей токсичности, которые создаются присутствием экотоксикантов, не нормирующиеся существующими стандартами, но обладающие способностью вызывать разнообразные генотоксические, токсические, цитотоксические или мутагенные эффекты [Журавлева, 2006].

Кроме того, химико-аналитические и гидрохимические методы могут быть неэффективными, в силу их недостаточно высокой чувствительности. Биота может подвергаться токсическим воздействиям, которые не регистрируются техническими средствами связи с тем, что любой аналитический датчик не способен воспринимать такие низкие концентрации веществ по сравнению с живыми объектами [Мелехова, 2007].

В основе биотестирования лежит метод биологического моделирования. В определенной мере всякая модель является специфической формой отражения действительности. При биотестировании происходит перенос знаний с примитивной системы (смоделированной в лаборатории) на более сложную систему (экосистема в реальных условиях) [Маячкина, 2009]. По некоторым данным биотестирование - обязательное дополнение к химическому анализу, а также является интегральным методом оценки токсичности водной среды [Туманов, Постнов, 1983]. В стандарты по контролю качества вод различного назначения включены и методы биотестирования [Александрова, 2013].

Для того чтобы оценить состояние разных организмов, находящихся под воздействием естественных или антропогенных факторов проводят тестирование на биологических объектах, которые представляют собой комплекс различных подходов. Эффективность физиологических процессов, которые обеспечивают нормальное функционирование организма (например, такие как дыхание, обмен веществ, активность питания и тому подобное) является основным показателем их состояния. На воздействие среды организм реагирует посредством сложной физиологической системы буферных гомеостатических механизмов, но только при оптимальных условиях поддерживает оптимальное протекание процессов развития. Под воздействием неблагоприятных условий гомеостаз может быть нарушен, что приводит к состоянию стресса. Эти нарушения могут происходить до появления изменений, которые используются параметрами жизнеспособности. Таким образом, методы биотестирования, основываются на исследовании механизмов гомеостаза и его эффективности, а также позволяют уловить присутствие воздействия стресс - фактора раньше, чем другие, обычно используемые методы [Мелехова, 2007].



Понравилась статья? Поделитесь ей
Наверх