Открытию закона всемирного тяготения помог фрукт. Ньютон и закон всемирного тяготения. О теории Ньютона

… Да возрадуются смертные, что среди них жило такое украшение рода человеческого.

(Надпись на могиле Исаака Ньютона)

Каждый школьник знает красивую легенду о том, как Исаак Ньютон открыл закон всемирного тяготения: на голову великого ученого упало яблоко, и вместо того, чтобы разозлиться, Исаак задумался, почему это произошло? Почему Земля все притягивает, а брошенное обязательно падает вниз?

Но скорее всего это была красивая легенда, выдуманная позже. В реальности Ньютону для открытия своего закона пришлось проделать сложную и кропотливую работу. Мы хотим рассказать вам о том, как великий ученый открыл свой знаменитый закон.

Принципы естествоиспытате- ля

Исаак Ньютон жил на стыке XVII и XVIII веков (1642-1727 гг.). Жизнь в это время была совершенно иной. Европу сотрясали войны, а в 1666 году Англию, где жил Ньютон, настигла ужасная эпидемия, прозванная “черной смертью”. Впоследствии это событие назовут “Великая эпидемия чумы в Лондоне”. Многие из наук только-только зарождались, образованных людей было мало, как и то, что они знали.

Например, современная еженедельная газета содержит больше информации, чем среднестатистический человек в то время узнавал за всю свою жизнь!

Несмотря на все эти сложности, находились люди, которые стремились к знаниям, совершали открытия и двигали прогресс вперед. Одним из них был великий английский ученый Исаак Ньютон.

Совершить свои основные открытия ученому помогли принципы, которые он называл “правила философствования”.

Правило 1. “Не должно приниматься в природе иных причин кроме тех, которые истинны и достаточны для объяснения явлений… природа ничего не делает напрасно, а было бы напрасным совершать многим то, что может быть сделано меньшим. Природа проста и не роскошествует излишними причинами вещей... ”

Суть этого правила заключается в том, что если мы можем исчерпывающе объяснить новое явление уже существующими законами, то нам не следует вводить новых. Это правило в обобщенной форме называется Бритвой Оккамы.

Правило 2. “В опытной физике предложения, выведенные из совершающихся явлений с помощью наведения (то есть метода индукции), несмотря на возможность противных им предположений, должны быть почитаемы за верные или в точности, или приближённо, пока не обнаружатся такие явления, которыми они ещё более уточняются или же окажутся подверженными исключениям”. Это значит, что все законы физики должны быть доказаны или опровергнуты опытным путем.

В своих принципах философствования Ньютон сформулировал принципы научного метода . Современная физика успешно исследует и применяет явления, природа которых ещё не выяснена (например, элементарные частицы). Начиная с Ньютона, естествознание развивается в твердой уверенности, что мир можно познать, и что Природа устроена по простым математическим принципам. Эта уверенность стала философской базой для грандиозного прогресса науки и технологии в истории человечества.

Плечи гигантов

Наверное, вы не слышали о датском алхимике Тихо Браге. Тем не менее, именно он был учителем Кеплера и первым составил точную таблицу движения планет на основе своих наблюдений. Необходимо отметить, что эти таблицы представляли всего лишь координаты планет на небе. Тихо завещал их Иоганну Кеплеру , своему ученику, который после внимательного изучения этих таблиц понял, что движение планет подчинено некой закономерности. Кеплер сформулировал их следующим образом:

  1. Все планеты движутся вокруг по эллипсу, в одном из фокусов которого находится Солнце.
  2. Радиус, проведенный от Солнца до планеты, “заметает” равные площади в равные промежутки времени.
  3. Квадраты периодов двух планет (T 1 и T 2) относятся как кубы больших полуосей их орбит (R 1 и R 2):

Сразу же бросается в глаза то, что Солнце играет особую роль в этих законах. Но Кеплер не мог объяснить эту роль, как и не смог объяснить причину движения планет вокруг Солнца.

Исаак Ньютон как-то скажет, что если он и видел дальше других, то только потому, что стоял на плечах гигантов. Он взялся найти первопричину законов Кеплера.

Всемирный закон

Ньютон понял, что для того, чтобы изменить скорость тела, необходимо приложить к нему силу. Сегодня каждый школьник знает это утверждение как Первый закон Ньютона : изменение скорости тела за единицу времени (иначе говоря ускорение a) прямо пропорционально силе (F), и обратно пропорционально массе тела (m). Чем больше масса тела, тем больше усилий мы должны затратить на изменение его скорости. Обратите внимание, Ньютон использует только одну характеристику тела - его массу, не рассматривая его форму, из чего оно сделано, какого оно цвета и прочее. Это и есть пример применение бритвы Оккамы. Ньютон считал, что масса тела необходимый и достаточный “фактор” для описания взаимодействие тел:

Ньютон представлял планеты как большие тела, которые двигаются по окружности (или почти окружности). В повседневной жизни он часто наблюдал подобное движение: дети играли с мячом, к которому была привязана нить, они вертели его у себя над головой. В данном случае, Ньютон видел мяч (планету) и то, что она движется по кругу, но не видел нити. Проводя подобную аналогию и используя свои правила философствования, Ньютон понял, что надо искать некую силу - ”нить”, которая связывает планеты и Солнце. Дальнейшие рассуждения упростились после того, как Ньютон применил свои же законы динамики.

Ньютон, используя свой первый закон и третий закон Кеплера, получил:

Тем самым Ньютон определил, что Солнце действует на планеты с силой:

Также он понял, что все планеты кружатся вокруг Солнца, и считал естественным, что масса Солнца должна быть учтена в константе:

Именно в такой форме закон всемирного тяготения соответствовал наблюдениям Кеплера и его законам движения планет. Величина G = 6,67 х 10 (-11) H (м/кг) 2 , была выведена из наблюдений за планетами. Благодаря этому закону были описаны движения небесных тел, и, более того, мы смогли предугадать существование невидимых для нас объектов. В 1846 году ученые рассчитали орбиту ранее неизвестной планеты, которая своим существованием оказывала влияние на движение других планет Солнечной системы. Это был .

Ньютон верил, что в основе самых сложных вещей лежат простые принципы и “механизмы взаимодействия”. Именно поэтому он смог разглядеть в наблюдениях своих предшественников закономерность и сформулировать ее в Закон всемирного тяготения.

Аристотель утверждал, что массивные предметы падают на землю быстрее лёгких.

Ньютон предположил, что Луну следует рассматривать как снаряд, который движется по искривленной траектории, поскольку на него действует земное тяготение. Поверхность Земли тоже искривлена, так что при достаточно быстром движении снаряда его искривленная траектория будет следовать за кривизной Земли, и он станет «падать» вокруг планеты. Если увеличить скорость снаряда, его траектория вокруг Земли вытянется в эллипс.

Галилей в начале XVII века показал, что все предметы падают «одинаково». И примерно в то же время Кеплер задумывался, что заставляет планеты двигаться по своим орбитам. Быть может, это магнетизм? Исаак Ньютон, работая над « », свел все эти движения к действию единой силы, называемой гравитацией, которая подчиняется простым универсальным законам.

Галилей экспериментально показал, что путь, пройденный телом, падающим под действием гравитации, пропорционален квадрату времени падения: шар, падающий в течение двух секунд, пройдет вчетверо больший путь, чем такой же предмет в течение одной секунды. Также Галилей показал, что скорость прямо пропорциональна времени падения, и вывел отсюда, что пушечное ядро летит по параболической траектории — одному из видов конических сечений, как и эллипсы, по которым, согласно Кеплеру, движутся планеты. Но откуда эта связь?

Когда в середине 1660-х годов Кембриджский университет закрылся на время Великой эпидемии чумы, Ньютон вернулся в семейную усадьбу и там сформулировал свой закон тяготения, хотя и держал его потом в тайне еще 20 лет. (Историю об упавшем яблоке никто не слыхал, пока восьмидесятилетний Ньютон не рассказал эту байку после большого званого ужина.)

Он предположил, что все предметы во Вселенной порождают гравитационную силу, притягивающую другие объекты (подобно тому, как яблоко притягивается к Земле), и эта самая сила гравитации определяет траектории, по которым движутся в космосе звезды, планеты и другие небесные тела.

На склоне своих дней Исаак Ньютон рассказал, как это произошло: он гулял по яблоневому саду в поместье своих родителей и вдруг увидел луну в дневном небе. И тут же на его глазах с ветки оторвалось и упало на землю яблоко. Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. Знал он и о том, что Луна не просто висит в небе, а вращается по орбите вокруг Земли, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Тут ему и пришло в голову, что, возможно, это одна и та же сила заставляет и яблоко падать на землю, и Луну оставаться на околоземной орбите.

Закон обратных квадратов

Ньютон сумел рассчитать величину ускорения Луны под влиянием земной гравитации и нашел, что она в тысячи раз меньше, чем ускорение предметов (того же яблока) вблизи Земли. Как такое может быть, если они движутся под действием одной и той же силы?

Объяснение Ньютона состояло в том, что сила тяготения ослабевает с расстоянием. Объект на поверхности Земли в 60 раз ближе к центру планеты, чем Луна. Притяжение на орбите Луны составляет 1/3600, или 1/602, от того, что действует на яблоко. Таким образом, сила притяжения между двумя объектами — будь это Земля и яблоко, Земля и Луна или Солнце и комета — обратно пропорциональна квадрату разделяющего их расстояния. Удвойте расстояние, и сила уменьшится вчетверо, утройте его — сила станет меньше в девять раз и т. д. Сила также зависит от масс объектов — чем больше масса, тем сильнее гравитация.

Закон всемирного тяготения можно записать в виде формулы:
F = G(Mm/r 2).

Где: сила гравитации равна произведению большей массы M и меньшей массы m , деленному на квадрат расстояния между ними r 2 и помноженному на гравитационную постоянную, обозначаемую заглавной буквой G (строчная g обозначает вызванное тяготением ускорение).

Эта постоянная определяет притяжение между любыми двумя массами в любой точке Вселенной. В 1789 году ее использовали для вычисления массы Земли (6·1024 кг). Законы Ньютона замечательно предсказывают силы и движения в системе из двух объектов. Но при добавлении третьего всё значительно усложняется и приводит (спустя 300 лет) к математике хаоса.

Сэр Исаак Ньютон на склоне своих лет рассказал о том, как он открыл закон всемирного тяготения .

Когда молодой Исаак гулял в саду среди яблонь в поместье своих родителей, он увидел луну в дневном небе. И рядом с ним упало яблоко на землю, сорвавшись с ветки.

Поскольку Ньютон в это самое время работал над законами движения, он уже знал, что яблоко упало под воздействием гравитационного поля Земли. И знал, что Луна не просто находится на небе, а вращается вокруг Земли по орбите, и, следовательно, на нее воздействует какая-то сила, которая удерживает ее от того, чтобы сорваться с орбиты и улететь по прямой прочь, в открытый космос. Вот тут и пришла ему идея о том, что, возможно, одна и та же сила заставляет яблоко падать на землю, и Луну оставаться на околоземной орбите.

До Ньютона ученые считали, что имеются два типа гравитации: земная гравитация (действующая на Земле) и небесная гравитация (действующая на небесах). Такое представление прочно закрепилось в сознании людей того времени.

Прозрение Ньютона заключалось в том, что он объединил эти два типа гравитации в своем сознании. С этого исторического момента искусственное и ложное разделение Земли и остальной Вселенной прекратило свое существование.

Так и был открыт закон всемирного тяготения, который является одним из универсальных законов природы. Согласно закону, все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от химических и физических свойств тел, от состояния их движения, от свойств среды, где находятся тела. Тяготение на Земле проявляется, прежде всего, в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землёй. С этим связан термин «гравитация» (от лат. gravitas - тяжесть) , эквивалентный термину «тяготение».

Закон тяготения гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.


Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Гюйгенс, Роберваль, Декарт, Борелли, Кеплер, Гассенди, Эпикур и другие.

По предположению Кеплера, тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире.

Были, впрочем, догадки с правильной зависимостью от расстояния, но до Ньютона никто так и не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

В своём основном труде «Математические начала натуральной философии» (1687 г.) Исаак Ньютон вывел закон тяготения, основываясь на эмпирических законах Кеплера, известных к тому времени.
Он показал, что:

    • наблюдаемые движения планет свидетельствуют о наличии центральной силы;
    • обратно, центральная сила притяжения приводит к эллиптическим (или гиперболическим) орбитам.

В отличие от гипотез предшественников, теория Ньютона имела ряд существенных отличий. Сэр Исаак опубликовал не только предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель:

    • закон тяготения;
    • закон движения (второй закон Ньютона);
    • система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики.


Но Исаак Ньютон оставил открытым вопрос о природе тяготения. Не было объяснено также и предположение о мгновенном распространении тяготения в пространстве (т. е. предположение о том, что с изменением положений тел мгновенно изменяется и сила тяготения между ними), тесно связанное с природой тяготения. На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Только в 1915 году эти усилия увенчались успехом созданием общей теории относительности Эйнштейна , в которой все указанные трудности были преодолены.

Эта статья уделит внимание истории открытия закона всемирного тяготения. Здесь мы ознакомимся с биографическими сведениями из жизни ученого, открывшего эту физическую догму, рассмотрим ее основные положения, взаимосвязь с квантовой гравитацией, ход развития и многое другое.

Гений

Сэр Исаак Ньютон - ученый родом из Англии. В свое время много внимания и сил уделил таким науками, как физика и математика, а также привнес немало нового в механику и астрономию. По праву считается одним из первых основоположников физики в ее классической модели. Является автором фундаментального труда «Математические начала натуральной философии», где изложил информацию о трех законах механики и законе всемирного тяготения. Исаак Ньютон заложил этими работами основы классической механики. Им было разработано и интегрального типа, световая теория. Он также внес большой вклад в физическую оптику и разработал множество других теорий в области физики и математики.

Закон

Закон всемирного тяготения и история его открытия уходят своим началом в далекий Его классическая форма - это закон, при помощи которого описывается взаимодействие гравитационного типа, не выходящее за пределы рамок механики.

Его суть заключалась в том, что показатель силы F гравитационной тяги, возникающей между 2 телами или точками материи m1 и m2, отделенными друг от друга определенным расстоянием r, соблюдает пропорциональность по отношению к обоим показателям массы и имеет обратную пропорциональность квадрату расстояния между телами:

F = G, где символом G мы обозначаем постоянную гравитации, равную 6,67408(31).10 -11 м 3 /кгс 2 .

Тяготение Ньютона

Прежде чем рассмотреть историю открытия закона всемирного тяготения, ознакомимся более детально с его общей характеристикой.

В теории, созданной Ньютоном, все тела с большой массой должны порождать вокруг себя особое поле, которое притягивает другие объекты к себе. Его называют гравитационным полем, и оно имеет потенциал.

Тело, обладающее сферической симметрией, образует за пределом самого себя поле, аналогичное тому, которое создает материальная точка той же массы, расположенная в центре тела.

Направление траектории такой точки в поле гравитации, созданным телом с гораздо более большой массой, подчиняется Объекты вселенной, такие как, например, планета или комета, также подчиняются ему, двигаясь по эллипсу или гиперболе. Учет искажения, которое создают другие массивные тела, учитывается с помощью положений теории возмущения.

Анализируя точность

После того, как Ньютон открыл закон всемирного тяготения, его необходимо было проверить и доказать множество раз. Для этого совершались ряды расчетов и наблюдений. Придя к согласию с его положениями и исходя из точности его показателя, экспериментальная форма оценивания служит ярким подтверждением ОТО. Измерение квадрупольных взаимодействий тела, что вращается, но антенны его остаются неподвижными, показывают нам, что процесс наращивания δ зависит от потенциала r -(1+δ) , на расстоянии в несколько метров и находится в пределе (2,1±6,2).10 -3 . Ряд других практических подтверждений позволили этому закону утвердиться и принять единую форму, без наличия модификаций. В 2007 г. данную догму перепроверили на расстоянии, меньшем сантиметра (55 мкм-9,59 мм). Учитывая погрешности эксперимента, ученые исследовали диапазон расстояния и не обнаружили явных отклонений в этом законе.

Наблюдение за орбитой Луны по отношению к Земле также подтвердило его состоятельность.

Евклидово пространство

Классическая теория тяготения Ньютона связана с евклидовым пространством. Фактическое равенство с достаточно большой точностью (10 -9) показателей меры расстояния в знаменателе равенства, рассмотренного выше, показывает нам эвклидову основу пространства Ньютоновской механики, с трехмерной физической формой. В такой точке материи площадь сферической поверхности имеет точную пропорциональность по отношению к величине квадрата ее радиуса.

Данные из истории

Рассмотрим краткое содержание истории открытия закона всемирного тяготения.

Идеи выдвигались и другими учеными, живших перед Ньютоном. Размышления о ней посещали Эпикура, Кеплера, Декарта, Роберваля, Гассенди, Гюйгенса и других. Кеплер выдвигал предположение о том, что сила тяготения имеет обратную пропорцию расстоянию от звезды Солнца и распространение имеет лишь в эклиптических плоскостях; по мнению Декарта, она была последствием деятельности вихрей в толще эфира. Существовал ряд догадок, который содержал в себе отражение правильных догадок о зависимости от расстояния.

Письмо от Ньютона Галлею содержало информацию о том, что предшественниками самого сэра Исаака были Гук, Рен и Буйо Исмаэль. Однако до него никому не удалось четко, при помощи математических методов, связать закон тяготения и планетарное движение.

История открытия закона всемирного тяготения тесно связанна с трудом «Математические начала натуральной философии» (1687). В этой работе Ньютон смог вывести рассматриваемый закон благодаря эмпирическому закону Кеплера, уже бывшему к тому времени известным. Он нам показывает, что:

  • форма движения любой видимой планеты свидетельствует о наличичи центральной силы;
  • сила притяжения центрального типа образует эллиптические или гиперболические орбиты.

О теории Ньютона

Осмотр краткой истории открытия закона всемирного тяготения также может указать нам на ряд отличий, которые выделяли ее на фоне предшествующих гипотез. Ньютон занимался не только публикацией предлагаемой формулы рассматриваемого явления, но и предлагал модель математического типа в целостном виде:

  • положение о законе тяготения;
  • положение о законе движения;
  • систематика методов математических исследований.

Данная триада могла в достаточно точной мере исследовать даже самые сложные движения небесных объектов, таким образом создавая основу для небесной механики. Вплоть до начала деятельности Эйнштейна в данной модели наличие принципиального набора поправок не требовалось. Лишь математические аппараты пришлось значительно улучшить.

Объект для обсуждений

Обнаруженный и доказанный закон в течение всего восемнадцатого века стал известным предметом активных споров и скрупулезных проверок. Однако век завершился общим согласием с его постулатами и утверждениям. Пользуясь расчетами закона, можно было точно определить пути движения тел на небесах. Прямая проверка была совершена в 1798 году. Он сделал это, используя весы крутильного типа с большой чувствительностью. В истории открытия всемирного закона тяготения необходимо выделить особое место толкованиям, введенным Пуассоном. Он разработал понятие потенциала гравитации и Пуассоново уравнение, при помощи которого можно было исчислять данный потенциал. Такой тип модели позволял заниматься исследованием гравитационного поля в условиях наличия произвольного распределения материи.

В теории Ньютона было немало трудностей. Главной из них можно было считать необъяснимость дальнодействия. Нельзя было точно ответить на вопрос о том, как силы притяжения пересылаются сквозь вакуумное пространство с бесконечной скоростью.

«Эволюция» закона

Последующие двести лет, и даже больше, множеством ученых-физиков были предприняты попытки предложить разнообразные способы по усовершенствованию теории Ньютона. Данные усилия окончились триумфом, совершенным в 1915 году, а именно сотворением Общей теории относительности, которую создал Эйнштейн. Он смог преодолеть весь набор трудностей. В согласии с принципом соответствия теория Ньютона оказалась приближением к началу работы над теорией в более общем виде, которое можно применять при наличии определенных условий:

  1. Потенциал гравитационной природы не может быть слишком большим в исследуемых системах. Солнечная система является примером соблюдения всех правил по движению небесного типа тел. Релятивистское явление находит себя в заметном проявлении смещения перигелия.
  2. Показатель скорости движения в данной группе систем является незначительным в сравнении со световой скоростью.

Доказательством того, что в слабом стационарном поле гравитации расчеты ОТО принимают форму ньютоновых, служит наличие скалярного потенциала гравитации в стационарном поле со слабо выраженными характеристиками сил, который способен удовлетворить условия уравнения Пуассона.

Масштаб квантов

Однако в истории ни научное открытие закона всемирного тяготения, ни Общая теория относительности не могли служить окончательной гравитационной теорией, поскольку обе недостаточно удовлетворительно описывают процессы гравитационного типа в масштабах квантов. Попытка создания квантово-гравитационной теории является одной из самых главных задач физики современности.

Со точки зрения квантовой гравитации взаимодействие между объектами создается при помощи взаимообмена виртуальными гравитонами. В соответствии с принципом неопределенности, энергетический потенциал виртуальных гравитонов имеет обратную пропорциональность промежутку времени, в котором он существовал, от точки излучения одним объектом до момента времени, в котором его поглотила другая точка.

Ввиду этого получается, что в малом масштабе расстояний взаимодействие тел влечет за собой и обмен гравитонами виртуального типа. Благодаря данным соображениям можно заключить положение о законе потенциала Ньютона и его зависимости в соответствии обратному показателю пропорциональности по отношению к расстоянию. Наличие аналогии между законами Кулона и Ньютона объясняется тем, что вес гравитонов равняется нулю. Это же значение имеет и вес фотонов.

Заблуждение

В школьной программе ответом на вопрос из истории, как Ньютон открыл закон всемирного тяготения, служит история о падающем плоде яблока. Согласно этой легенде, оно свалилось на голову ученому. Однако это - массово распространенное заблуждение, и в действительности все смогло обойтись без подобного случая возможной травмы головы. Сам Ньютон иногда подтверждал данный миф, но в действительности закон не был спонтанным открытием и не пришел в порыве сиюминутного озарения. Как было написано выше, он разрабатывался долгое время и был представлен впервые в трудах о «Математических началах», вышедших на обозрение публике в 1687 году.

ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ.
Закон всемирного тяготения был открыт Ньютоном в 1666 г. Он гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними - то есть:

Здесь G - гравитационная постоянная, равная м;/(кг с;).
Легенда гласит, что Ньютон открыл закон всемирного тяготения после того, как яму упало на голову яблоко. Но скорее всего, всё с античных философов вроде Эпикура, которые объясняли тяготение взаимным любовным влечением физических тел. Но Ньютону дать научное, математически оформленное объяснение тяготению. Ньютон очень гордился открытием своего закона, но всё же скромно признавался, что смог сделать его, лишь «став на плечи гигантов».
Всё началось с Коперника, который открыл, что «она вертится», и задача раскрытия механизма солнечной системы обрела основу. Вслед за польским учёным Коперником, английский Гильберт (1540-1603) внес свою лепту в объяснение тяготения, предположив, силы тяготения подобны силе магнитов. Француз же Рене Декарт предположил, что тяготение создают вихри тонкой невидимой материи, а планеты подобны телам попавшим в водяные воронки. Но строгий порядок в мысли о тяготении внес Иоганна Кеплер (1571-1630), который вывел количественные законы движения планет. Потом Галилей добавил закон инерции и принцип независимости действия сил. А вот уже Роберт Гук (1635-1703) сделал практически первый эскиз закона: «Все небесные тела производят притяжение к их центрам, притягивая не только свои части, как мы это наблюдали на Земле, но и другие небесные тела, находящиеся в сфере их действия».
В 1684 г. астроном Эдмунд Галлей (1656 - 1742), догадавшись, что сила тяготения убывает обратно пропорционально квадрату расстояния, обратился к своему приятелю Ньютону с просьбой обсчитать эту идею, но оказалась, что тот уже давно всё подсчитал, но Королевское общество его расчёты не заценило. Галлей убедил Ньютона снова сдать свои результаты в Королевское общество, и тот отнес туда свой трактат «Предположения о движении». Таким образом миру стало известно о всемирном тяготении.
Через 200 лет после открытия Ньютоном своего закона в 1915 Альберт Эйнштейн создал общую теорию относительности. Оказалось, что теория Ньютона - приближение более общей теории, применимое при выполнении двух условий:
1. Гравитационный потенциал в исследуемой системе не слишком велик: .
2. Скорости движения в этой системе незначительны по сравнению со скоростью света: .
В рамках общей теории относительности, как и в других метрических теориях, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого; пространства-времени, которая связана, в частности, с присутствием массы-энергии.
--
Но в сети можно найти массу роликов и текстов, показывающих что никакой гравитации нет. С вполне интересной аргументацией. Что же есть тогда? Вращение, заряд-электричество. То есть, самои основы классической и даже не очень классической физики имеют червоточенку. Во как.
...
Но в целом всё ещё интересней. Гегель например, критиковал Ньютона, за этот закон. Гравитация-притяжение в принципе не возможны. Возможно только давление-отталкивание. Ф. Энгельс эту мысль поддержал. Российский физик Федулаев пытается построить на этой основе физическую теорию. По-моему, у него получилось бы успешнее, если бы он принял гипотезу вывернутой (вогнутой) Земли.

Российский физик Вадим Ловчиков приводит немало аргументов, свидетельствующих, что Ньютон вообще не создавал теории всемирного тяготения. Вернадский считал также, что Ньютон критиковал теорию тяготения и не является её автором.



Понравилась статья? Поделитесь ей
Наверх