Плазма (агрегатное состояние). Искусственно созданная и природная плазма

Плазма - это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Поэтому в целом плазма является электрически нейтральной системой.

Определяется отношением числа ионизированных атомов к их общему числу

В зависимости от степени ионизации плазма подразделяется на слабо ионизированную ( - доли процента), частично ионизированную ( - несколько процентов) и полностью ионизированную ( = 100%). Слабо ионизированной плазмой является ионосфера - верхний слой земной атмосферы. В состоянии полностью ионизированной плазмы находится Солнце, горячие звезды. Солнце и звезды представляют собой гигантские сгустки горячей плазмы, где температура очень высокая, порядка 10 6 - 10 7 К. Искусственно созданной плазмой различной степени ионизации является плазма в газовых разрядах, газоразрядных лампах.

Существование плазмы связано либо с нагреванием газа, либо с излучением различного рода, либо с бомбардировкой газа быстрыми заряженными частицами.

Ряд свойств плазмы позволяет рассматривать ее как особое состояние вещества. Плазма - самое распространенное состояние вещества. Плазма существует не только в качестве вещества звезд и Солнца, она заполняет и космическое пространство между звездами и галактиками. Верхний слой атмосферы Земли также представляет собой слабо ионизированную плазму. Частицы плазмы интенсивно взаимодействуют с внешними электрическими и магнитными полями: из-за большой подвижности заряженные частицы плазмы легко перемещаются под действием электрических и магнитных полей. Поэтому любое нарушение электрической нейтральности отдельных областей плазмы, вызванное скоплением частиц с зарядом одного знака, быстро исчезает. Возникающие электрические поля перемещают заряженные частицы до тех пор, пока электрическая нейтральность не восстанавливается и электрическое поле не становится равным нулю.

Между заряженными частицами плазмы действуют кулоновские силы, сравнительно медленно убывающие с расстоянием. Каждая частица взаимодействует сразу с большим количеством окружающих частиц. Благодаря этому наряду с хаотическим тепловым движением частицы плазмы могут участвовать в разнообразных упорядоченных движениях. В плазме легко возбуждаются разного рода колебания и волны. Проводимость плазмы увеличивается по мере роста степени ионизации. Электропроводность и теплопроводность полностью ионизированной плазмы зависят от температуры по законам

соответственно. При высокой температуре полностью ионизированная плазма по своей проводимости приближается к сверхпроводникам.

Ионизация атомов межзвездной среды производится излучением звезд и космическими лучами - потоками быстрых частиц, пронизывающими пространство Вселенной по всем направлениям. В отличие от горячей плазмы звезд температура межзвездной плазмы очень мала.

Управление движением плазмы в электрических и магнитных полях является основой ее использования как рабочего тела в различных двигателях для непосредственного превращения внутренней энергии в электрическую - плазменные источники электроэнергии, магнитогидродинамические генераторы. Для космических кораблей перспективно использование маломощных плазменных двигателей. Мощная струя плотной плазмы, получаемая в плазмотроне, широко используется для резки и сварки металлов, бурения скважин, ускорения многих химических реакций. Проводятся широкомасштабные исследования по применению высокотемпературной плазмы для создания управляемых термоядерных реакций.

Помимо трех основных состояний вещества: жидкого, твердого и газообразного, существует еще и четвертое состояние вещества. Это состояние называется плазма. Плазма - частично или полностью ионизированный газ. Плазму можно получить путем дальнейшего нагревания газа. При достаточно больших температурах начинается ионизация газа. И он переходит в состояние плазмы.

Степень ионизации плазмы может быть различной, в зависимости от того сколько атомов и молекул ионизировано. Помимо нагревания газа, плазму можно получить и другими путями. Например, с помощью излучений или бомбардировкой газа быстрыми заряженными частицами. В таких случаях говорят о низкотемпературной плазме.

Свойства плазмы

Плазму выделили в отдельное четвертое состояние вещества, так как она обладает специфическими свойствами. Плазма в целом является электрически нейтральной системой. Любое нарушение нейтральности устраняется путем скопления частиц одного знака.

Это происходит потому, что заряженные частицы плазмы обладают очень высокой подвижностью и легко поддаются воздействию электрических и магнитных полей. Под действием электрических полей заряженные частицы перемещаются к области, где нарушена нейтральность, до тех пор, пока электрическое поле не станет равным нулю, то есть восстановится нейтральность.

Между молекулами плазмы действуют силы кулоновского притяжения. При этом каждая частица взаимодействует сразу с многими другими окружающими её частицами. Вследствие чего, частицы плазмы помимо хаотичного теплового движения, могут участвовать в различных упорядоченных движениях. Поэтому в плазме легко возбудить различные колебания и волны.
По мере увеличения степени ионизации плазмы, её проводимость увеличивается. При достаточно высоких температурах, плазму можно считать сверхпроводником.

Плазма в природе

Огромная часть вещества Вселенной находится именно в состоянии плазмы. Например, Солнце и другие звезды вследствие высокой температуры состоят, в основном, из полностью ионизированной плазмы. Межзвездная среда тоже состоит из плазмы. Здесь ионизация атомов вызывается излучением самих звезд.

Межзвездная плазма является примером низкотемпературной плазмы. Наша планета тоже окружена плазмой. Например, ионосфера. В ионосфере ионизация газа вызывается излучением солнца. Выше ионосферы, расположены радиационные пояса Земли, которые тоже состоят из плазмы.

В данном случае плазма также является низкотемпературной. Большей частью свойств плазмы обладают также свободные электроны в металлах. Но их ограничением является тот факт, что они не могут свободно перемещаться по всему объему тела.

Одно и тоже вещество в природе имеет возможность кардинальным образом варьировать свои свойства в зависимости от показателей температуры и давления. Прекрасным примером тому может служить вода, которая существует в виде твёрдого льда, жидкости и пара. Это три агрегатных состояния данной субстанции, имеющей химическую формулу Н 2 О. Другие вещества в естественных условиях способны менять свои характеристики аналогическим образом. Но кроме перечисленных, в природе существует и другое агрегатное состояние - плазма. Это достаточно редкая в земных условиях наделённая особыми качествами.

Молекулярное строение

От чего зависят 4 состояния вещества, в котором пребывает материя? От взаимодействия элементов атома и самих молекул, наделённых свойствами взаимного отталкивания и притяжения. Указанные силы самокомпенсируются в твёрдом состоянии, где атомы располагаются геометрически правильно, образуя кристаллическую решётку. При этом материальный объект способен сохранять обе упомянутые выше качественные характеристики: объём и форму.

Но стоит кинетической энергии молекул увеличится, хаотично двигаясь, они разрушают установленный порядок, превращаясь в жидкости. Они обладают текучестью и характеризуются отсутствием геометрических параметров. Но при этом данная субстанция сохраняет свою способность не менять общий объём. В газообразном состоянии взаимное притяжение между молекулами полностью отсутствует, поэтому газ не имеет формы и обладает возможностью неограниченного расширения. Но концентрация вещества при этом значительно падает. Сами молекулы в обычных условиях не меняются. В этом заключается основная особенность первых 3 из 4 состояний вещества.

Трансформация состояний

Процесс превращения твёрдого тела в другие формы возможно осуществить, постепенно увеличивая температуру и варьируя показатели давления. При этом переходы будут происходить скачкообразно: расстояние между молекулами заметно увеличится, разрушатся межмолекулярные связи с изменением плотности, энтропии, количества свободной энергии. Вероятна также трансформация твёрдого тела сразу в газообразную форму, минуя промежуточные этапы. Она носит название сублимации. Подобный процесс вполне возможен в обычных земных условиях.

Но когда показатели температуры и давления достигают критического уровня, образуется Внутренняя энергия вещества настолько увеличивается, что электроны, двигаясь с бешенной скоростью, покидают свои внутриатомные орбиты. При этом образуются положительные и отрицательные частицы, но плотность их в получившейся структуре остаётся практически одинаковой. Таким образом возникает плазма - агрегатное состояние вещества, представляющего, по сути, газ, полностью или частично ионизированный, элементы которого наделены способностью на больших расстояниях взаимодействовать между собой.

Высокотемпературная плазма космоса

Плазма, как правило, субстанция нейтральная, хотя и состоит из заряженных частиц, потому что положительные и отрицательные элементы в ней, будучи приблизительно равными по количеству, компенсируют друг друга. Это агрегатное состояние в обычных земных условиях встречается реже других, упомянутых ранее. Но несмотря на это, большинство космических тел состоит именно из природной плазмы.

Примером тому могут служить Солнце и прочие многочисленные звёзды Вселенной. Там показатели температуры фантастический высоки. Ведь на поверхности главного светила нашей планетарной системы они достигают 5 500°С. Это более чем в полсотни раз превышает те параметры, которые необходимы для того, чтобы закипела вода. В центре же огнедышащего шара температура составляет 15 000 000°С. Неудивительно, что газы (в основном это водород) там ионизируются, достигая агрегатного состояния плазмы.

Низкотемпературная плазма в природе

Межзвёздная среда, заполняющая галактическое пространство, также состоит из плазмы. Но она отличается от высокотемпературной её разновидности, описанной ранее. Подобная субстанция состоит из ионизированного вещества, возникающего вследствие излучения, испускаемого звёздами. Это низкотемпературная плазма. Таким же образом солнечные лучи, достигая пределов Земли, создают ионосферу и находящийся над ней радиационный пояс, состоящий из плазмы. Различия лишь в составе вещества. Хотя в подобном состоянии могут находится все элементы, представленные в таблице Менделеева.

Плазма в условиях лаборатории и её применение

Согласно законам легко получается в привычных для нас условиях. При проведения лабораторных опытов достаточно конденсатора, диода и сопротивления, подключённых последовательно. Подобная цепь на секунду подсоединяется к источнику тока. И если прикоснуться проводами к металлической поверхности, то частицы её самой, а также расположенные вблизи молекулы паров и воздуха ионизируются и оказываются в агрегатном состоянии плазмы. Аналогичные свойства материи используются при создании ксеноновых и неоновых экранов и сварочных аппаратов.

Плазма и природные явления

В естественных условиях плазму можно наблюдать в свете Северного сияния и во время грозы в виде шаровой молнии. Объяснение некоторым природным явлениям, которым ранее приписывались мистические свойства, ныне дала современная физика. Плазма, образующаяся и светящаяся на концах высоких и острых предметов (мачтах, башнях, огромных деревьях) при особом состоянии атмосферы, столетия назад принималась моряками за вестник удачи. Именно поэтому данное явление получило название «Огни святого Эльма».

Видя коронный разряд в облике светящихся кисточек или пучков во время грозы в шторм, путешественники принимали это за доброе предзнаменование, понимая, что избежали опасности. Неудивительно, ведь возвышающиеся над водой объекты, подходящие для «знаков святого», могли говорить о приближении судна к берегу или пророчить встречу с другими кораблями.

Неравновесная плазма

Приведённые выше примеры красноречиво свидетельствуют о том, что не обязательно нагревать вещество до фантастических температур, чтобы добиться состояния плазмы. Для ионизации достаточно использовать силу электромагнитного поля. При этом тяжёлые составные элементы материи (ионы) не приобретают значительную энергию, ведь температура при осуществлении этого процесса вполне может не превышать по Цельсию нескольких десятков градусов. В таких условиях лёгкие электроны, отрываясь от основного атома, движутся значительно быстрее более инертных частиц.

Подобная холодная плазма называется неравновесной. Кроме плазменных телевизоров и неоновых ламп, она используется также при очистке воды и продуктов питания, применяется для дезинфекции в медицинских целях. К тому же холодная плазма способна содействовать ускорению химических реакций.

Принципы использования

Прекрасным примером того, как применяется во благо человечества искусственно созданная плазма, является изготовление плазменных мониторов. Ячейки такого экрана наделены способностью излучать свет. Панель представляет собой некий «бутерброд» из стеклянных листов, близко расположенных друг к другу. Между ними размещаются коробочки со смесью инертных газов. Ими могут быть неон, ксенон, аргон. А на внутреннюю поверхность ячеек наносятся люминофоры синего, зелёного, красного цвета.

Снаружи ячеек подведены токопроводящие электроды, между которыми создаётся напряжение. В результате этого возникает электрическое поле и, как следствие, молекулы газа ионизируются. Образующаяся плазма испускает ультрафиолетовые лучи, поглощаемые люминофорами. Ввиду это возникает явление флуоресценции посредством испускаемых при этом фотонов. За счёт сложного соединения лучей в пространстве возникает яркое изображение самых разнообразных оттенков.

Плазменные ужасы

Смертоносный облик принимает эта форма материи во время ядерного взрыва. Плазма в больших объёмах образуется во время течения данного неуправляемого процесса с высвобождением огромного количества различных видов энергии. возникшая в результате запуска в действие детонатора, вырывается наружу и нагревает в первые секунды до гигантских температур окружающий воздух. На этом месте возникает смертоносный огненный шар, нарастающий с внушительной скоростью. Видимая область яркой сферы увеличивается за счёт ионизированного воздуха. Сгустки, клубы и струи плазмы взрыва формируют ударную волну.

Первое время светящийся шар, наступая, мгновенно поглощает всё на своём пути. В пыль превращаются не только кости и ткани человека, но и твёрдые скалы, разрушаются даже самые прочные искусственные сооружения и объекты. Не спасают бронированные двери в надёжные убежища, расплющиваются танки и другая боевая техника.

Плазма по своим свойствам напоминает газ тем, что не обладает определёнными формами и объёмом, в следствие этого она способна неограниченно расширяться. По данной причине многие физики высказывают мнение, что считать её отдельным агрегатным состоянием не следует. Однако существенные отличия её от просто горячего газа налицо. К ним относятся: возможность проводить электрические токи и подверженность влиянию магнитных полей, неустойчивость и способность составных частиц иметь разные показатели скоростей и температур, при этом коллективно взаимодействовать между собой.

– частично или полностью ионизованный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Газ переходит в состояние плазмы, если некоторые из составляющих его атомов (молекул) по какой-либо причине лишились одного или нескольких электронов, т.е. превратились в положительные ионы. В некоторых случаях в плазме в результате «прилипания» электронов к нейтральным атомам могут возникать и отрицательные ионы. Если в газе не остается нейтральных частиц, плазма называется полностью ионизованной.

Между газом и плазмой нет резкой границы. Любое вещество, находящееся первоначально в твердом состоянии, по мере возрастания температуры начинает плавиться, а при дальнейшем нагревании испаряется, т.е. превращается в газ. Если это молекулярный газ (например, водород или азот), то с последующим повышением температуры происходит распад молекул газа на отдельные атомы (диссоциация). При еще более высокой температуре газ ионизуется, в нем появляются положительные ионы и свободные электроны. Свободно движущиеся электроны и ионы могут переносить электрический ток, поэтому одно из определений плазмы гласит: плазма – это проводящий газ. Нагревание вещества не является единственным способом получения плазмы.

Плазма – четвертое состояние вещества, она подчиняется газовым законам и во многих отношениях ведет себя как газ. Вместе с тем, поведение плазмы в ряде случаев, особенно при воздействии на нее электрических и магнитных полей, оказывается столь необычным, что о ней часто говорят как о новом четвертом состоянии вещества. В 1879 английский физик В.Крукс, изучавший электрический разряд в трубках с разреженным воздухом, писал: «Явления в откачанных трубках открывают для физической науки новый мир, в котором материя может существовать в четвертом состоянии». Древние философы считали, что основу мироздания составляют четыре стихии: земля, вода, воздух и огонь. В известном смысле это отвечает принятому ныне делению на агрегатные состояния вещества, причем четвертой стихии – огню и соответствует, очевидно, плазма.

Сам термин «плазма» применительно к квазинейтральному ионизованному газу был введен американскими физиками Лэнгмюроми Тонксом в 1923 при описании явлений в газовом разряде. До той поры слово «плазма» использовалось лишь физиологами и обозначало бесцветный жидкий компонент крови, молока или живых тканей, однако вскоре понятие «плазма» прочно вошло в международный физический словарь, получив самое широкое распространение.

Франк-Каменецкий Д.А. Плазма – четвертое состояние вещества . М., Атомиздат, 1963
Арцимович Л.А. Элементарная физика плазмы . М., Атомиздат, 1969
Смирнов Б.М. Введение в физику плазмы . М., Наука, 1975
Милантьев В.П., Темко С.В. Физика плазмы . М., Просвещение, 1983
Чен Ф. Введение в физику плазмы . М., Мир, 1987

Найти "ПЛАЗМА " на

В первых трех состояниях - твердом, жидком и газообразном - электрические и магнитные силы глубоко запрятаны в недрах вещества. Они целиком уходят на то, чтобы связывать ядра и электроны в , атомы в и в кристаллы. Вещество в этих состояниях оказывается в целом электрически нейтральным. Другое дело - плазма. Электрические и магнитные силы здесь выступают на первый план и определяют все ее основные свойства. Плазма соединяет в себе свойства трех состояний: твердого (), жидкого (электролит) и газообразного. От металла она берет высокую электропроводность, от электролита - ионную проводимость, от газа - большую подвижность частиц. И все эти свойства переплетаются так сложно, что плазма оказывается очень трудной для изучения.

И все-таки ученым удается с помощью тонких физических приборов заглянуть в ослепительно светящееся газовое облако. Их интересует количественный и качественный состав плазмы, взаимодействие ее частей друг с другом.

До раскаленной плазмы руками не дотронешься. Ее ощупывают с помощью очень чувствительных «пальцев» - электродов, вводимых в плазму. Эти электроды называются зондами. Измеряя силу тока, идущего на зонд, при разных напряжениях, можно узнать степень концентрации электронов и ионов, их температуру и ряд других характеристик плазмы.(К слову интересно, что даже бумага А4 при определенных с ней манипуляций также может перейти в плазму)

Состав плазмы узнают, беря пробы плазменного вещества. Специальными электродами вытягивают небольшие порции ионов, которые затем сортируют по массам с помощью остроумного физического прибора - масс-спектрометра. Этот анализ дает возможность узнать также знак и степень ионизации, то есть отрицательно или положительно, однократно или многократно ионизированы атомы.

Плазму ощупывают также радиоволнами. В отличие от обычного газа плазма их сильно отражает, подчас сильнее, чем металлы. Это связано с наличием в плазме свободных электрических зарядов. До недавнего времени такое радиоощупывание было единственным источником сведений об ионосфере - замечательном плазменном «зеркале», которое природа поместила высоко над Землей. Сегодня ионосфера исследуется также с помощью искусственных спутников и высотных ракет, которые берут пробы ионосферного вещества и «на месте» производят его анализ.

Плазма - очень неустойчивое состояние вещества. Обеспечить согласованное движение всех ее составных частей - весьма нелегкое дело. Часто кажется, что это достигнуто, плазма усмирена, но внезапно по каким-то не всегда известным причинам в ней образуются сгущения и разрежения, возникают сильные колебания, и ее спокойное поведение резко нарушается.

Иногда же «игра» электрических и магнитных сил в плазме сама приходит на помощь ученым. Эти силы могут образовывать из плазмы тела компактной и правильной формы, названные плазмоидами. Форма плазмоидов может быть очень разнообразной. Здесь и кольца, и трубки, и сдвоенные кольца, и перекрученные шнуры. Плазмоиды довольно устойчивы. Например, если «выстрелить» навстречу друг другу двумя плазмоидами, то они при столкновении отлетят друг от друга, как бильярдные шары.

Изучение плазмоидов позволяет лучше понять процессы, происходящие с плазмой в гигантских масштабах вселенной. Один из видов плазмоидов - шнур - играет очень важную роль в попытках ученых создать управляемую . Плазмояды, видимо, будут использованы также в плазменной химии и металлургии.

НА ЗЕМЛЕ И В КОСМОСЕ

На Земле плазма - довольно редкое состояние вещества. Но уже на небольших высотах плазменное состояние начинает преобладать. Мощное ультрафиолетовое, корпускулярное и рентгеновское излучение ионизирует воздух в верхних слоях атмосферы и вызывает образование плазменных «облаков» в ионосфере. Верхние слои атмосферы - это защитная броня Земли, предохраняющая все живое от губительного действия солнечных излучений. Ионосфера - отличное зеркало для радиоволн (за исключением ультракоротких), позволяющее осуществлять земную радиосвязь на далекие расстояния.

Верхние слои ионосферы не исчезают и ночью: слишком разрежена в них плазма, чтобы возникшие днем ионы и электроны успели воссоединиться. Чем дальше от Земли, тем меньше в атмосфере нейтральных атомов, а на расстоянии в полтораста миллионов километров находится ближайший к нам колоссальный сгусток плазмы - .

Из него постоянно вылетают фонтаны плазмы - подчас на высоту в миллионы километров, - так называемые протуберанцы. По поверхности перемещаются вихри несколько менее горячей плазмы - солнечные пятна. Температура на поверхности Солнца около 5 500°, пятен - на 1 000° ниже. На глубине 70 тысяч километров - уже 400 000°, а еще дальше температура плазмы достигает более 10 миллионов градусов.

В этих условиях ядра атомов солнечного вещества совершенно оголены. Здесь при гигантских давлениях все время идут термоядерные реакции слияния ядер водорода и превращения их в ядра . Выделяющаяся при этом энергия восполняет ту, что Солнце так щедро излучает в мировое пространство, «отапливая» и освещая всю свою систему планет.

Звезды во вселенной находятся на разных стадиях развития. Одни умирают, медленно превращаясь в холодный несветящийся газ, другие взрываются, выбрасывая в пространство огромные облака плазмы, которые спустя миллионы и миллиарды лет достигают в виде космических лучей других звездных миров. Есть области, где силы притяжения сгущают газовые облака, в них растут давление и температура, пока не создаются благоприятные условия для появления плазмы и возбуждения термоядерных реакций, - и тогда вспыхивают новые звезды. Плазма в природе находится в непрерывном круговороте.

НАСТОЯЩЕЕ И БУДУЩЕЕ ПЛАЗМЫ

Ученые стоят на пороге овладения плазмой. На заре человечества величайшим достижением было умение получать и поддерживать огонь. А сегодня понадобилось создать и сохранить на длительное время другую, гораздо более «высокоорганизованную» плазму.

Мы уже говорили о применении плазмы в хозяйстве: вольтова дуга, лампы дневного света, газотроны и тиратроны. Но здесь «работает» сравнительно негорячая плазма. В вольтовой дуге, например, ионная температура составляет около четырех тысяч градусов. Однако сейчас появляются сверхжаропрочные сплавы, которые выдерживают температуру до 10-15 тысяч градусов. Чтобы обрабатывать их, нужна плазма с более высокой ионной температурой. Применение ее сулит немалые перспективы и для химической промышленности, так как многие реакции протекают тем быстрее, чем выше температура.

До какой же температуры пока удалось разогреть плазму? До десятков миллионов градусов. И это не предел. Исследователи уже находятся на подступах к управляемой термоядерной реакции синтеза, в ходе которой выделяются огромные количества энергии. Представьте себе искусственное солнце. И не одно, а несколько. Ведь они изменят климат нашей планеты, навсегда снимут с человечества заботу о топливе.

Вот какие применения ожидают плазму. А пока ведутся исследования. Большие коллективы ученых напряженно работают, приближая тот день, когда четвертое состояние вещества станет для нас таким же обычным, как и три остальных.



Понравилась статья? Поделитесь ей
Наверх