Регуляторная система человека. Нервная и эндокринная системы – основные регуляторные системы организма человека

В многоклеточном организме существует единая нейро-эндокринная система, которая обеспечивает согласованную регуляцию функций, структур и обмена веществ в различных органах и тканях.

Нервная система, как правило, через химический синапс (с помощью медиаторов), влияет на ближайшую к нервному окончанию клетку, а эндокринные образования вырабатывают гормоны, действующие на множество, даже удаленных от места их выработки, органов и тканей.

Нервная и эндокринная системы регулируют активность друг друга. Кроме того, одни и те же биологически активные вещества (БАВ) могут секретироваться эндокринными железами и нейронами (например, норадреналин).

Даже один отдел нервной системы (например, гипоталамус) способен влиять на другие структуры, как по нервным путям, так и с помощью гормонов.

Общая физиология эндокринной системы

Существование эндокринной системы невозможно без секреторных клеток. Они, вырабатывают свои биологически активные секреты (гормоны), которые поступают во внутренние внеклеточные среды организма (тканевая жидкость, лимфа и кровь). Поэтому эндокринные железы часто называют железами внутренней секреции.

В эндокринную систему входят (рис. 1) эндокринные железы (органы, в которых большинство клеток секретируют гормоны), нейрогемальные образования (нейроны, секретирующие вещества, обладающие свойствами гормонов)и диффузная эндокринная система (клетки секретирующие гормоны в органах и тканях, состоящих преимущественно из «неэндокринных» структур).

Рис. 1. Основные представители эндокринной системы: а) железы внутренней секреции (на примере надпочечника); б) нейрогемальные образования и в) диффузная эндокринная система (на примере поджелудочной железы).

К железам внутренней секреции относятся: гипофиз, щитовидная и околощитовидные железы, надпочечник и эпифиз. Примером нейрогемальной структуры являются нейроны секретирующие окситоцин, а диффузная эндокринная система наиболее характерна для поджелудочной железы, пищеварительного тракта, половых желез, тимуса и почек.

Эндокринные железы постоянно секретируют гормоны (базальный уровень секреции ), а уровень такой секреции, как правило, зависит от скорости их синтеза (только щитовидная железа накапливает в виде коллоида значительные количества гормонов ).

Таким образом, в соответствии с классической моделью эндокринной системы, гормон выделяется эндокринными железами в кровь, циркулирует с ней по всему организму и взаимодействует с клетками-мишенями независимо от степени удаления их от источника секреции.

Гормоны Свойства и классификации гормонов

Гормоны – это органические соединения, вырабатываемые в кровь специализированными клетками и влияющие вне места своего образования на определенные функции организма.

Для гормонов характерны: специфичность и высокая биологическая активность, дистантность действия, способность к прохождению через эндотелий капилляров и быстрая обновляемость.

Специфичность проявляется местом образования и избирательным действием гормонов на клетки. Биологическая активность гормонов характеризуется чувствительностью мишени к очень низким их концентрациям (10 -6 -10 -21 М). Дистантность действия заключается в проявлении эффектов гормонов на значительном расстоянии от места их образования (эндокринное действие). Способность к прохождению через эндотелий капилляров облегчает секрецию гормонов в кровь и переход их к клеткам-мишеням, а быстрая обновляемость объясняется высокой скоростью инактивации гормона или выведения из организма.

По химической природе гормоны делят на белковые, стероидные, а также производные аминокислот и жирных кислот.

Белковые гормоны дополнительно делят на полипептиды и протеиды (белки). К стероидным относят гормоны коры надпочечника и половых желез. Производными аминокислоты тирозина являются катехоламины (адреналин, норадреналин и дофамин) и тиреоидные гормоны, а жирных кислот - простогландины, тромбоксаны и лейкотриены.

У всех небелковых и некоторых небелковых гормонов также отсутствует видовая специфичность.

Вызываемые гормонами эффекты делят (рис. 2) на метаболические, морфогенетические, кинетические и коррегирующие (например, адреналин усиливает сердечные сокращения, но и без него сердце сокращается).

Эффекты

Метаболи-ческие

Морфогене-тические

Кинетические

Коррегирующие

Изменяют интенсивность обмена веществ

Регулируют дифференцировку и метаморфоз тканей

Повышают активность клеток-мишеней

Влияют на структуры, способные работать и при отсутствии гормонов

Рис. 2. Основные физиологические эффекты гормонов.

Гормоны переносятся кровью в растворенном и связанном (с белками) состояниях. Связанные гормоны неактивны и не разрушаются. Поэтому белки плазмы обеспечивают функции транспорта и депо гормона в крови. Часть из них (например, альбумины) взаимодействует с многими гормонами, но существуют и специфические переносчики. Например, кортикостероиды преимущественно связываются с транскортином.

Регуляция многих процессов в организме обеспечивается по принципу обратной связи. Он впервые был сформулирован отечественным ученым М.М. Завадовским в 1933 г. Под обратной связью подразумевается влияние результата деятельности системы на ее активность.

Различают «длинный», «короткий» и «ультракороткий» (рис. 3) уровни обратной связи.

Рис. 3. Уровни обратной связи.

Длинный уровень регуляции обеспечивает взаимодействие удаленных клеток, короткий – находящихся в соседних тканях, а ультракороткий – только в пределах одного структурного образования.

Физиологические процессы в организме человека согласованно проте­кают благодаря существованию определенных механизмов их регуляции.

Регуляция различных процессов в организме осуществляется с помощью нервного и гуморального механизмов.

Гуморальная регуляция осуществляется с помощью гуморальных факторов (гормонов ), которые разносятся кровью и лимфой по всему организму.

Нервная регуляция осуществляется с помощью нервной системы.

Нервный и гуморальный способы регуляции функций тесно связаны между собой. На деятельность нервной системы постоянно оказывают влияние приносимые с током крови химические вещества, а образование большинства химических веществ и выделение их в кровь находится под постоянным контролем нервной системы.

Регуляция физиологических функций в организме не может осуществляться с помощью только нервной или только гуморальной регуляции - это единый комплекс нейрогуморалыюй регуляции функций.

В последнее время высказано предположение, что существуют не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная).

Нервная регуляция

Нервная регуляция - это координирующее влияние нервной системы на клетки, ткани и органы, один из основных механизмов саморегуляции функций целостного организма. Нервная регуляция осуществляется с помощью нервных импульсов. Нервная регуляция является быстрой и локальной, что особенно важно при регуляции движений, и затрагивает все(!) системы организма.

В основе нервной регуляции лежит рефлекторный принцип. Рефлекс является универсальной формой взаимодействия организма с окружающей средой, это ответная реакция организма на раздражение, которая осуществляется через центральную нервную систему и контролируется ею.

Структурно-функциональной основой рефлекса является рефлекторная дуга - последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление ответа на раздражение. Все рефлексы осуществляются I благодаря деятельности центральной нервной системы - головного и спинного мозга.

Гуморальная регуляция

Гуморальная регуляция - это координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (гормонов), выделяемых клетками, органами и тканями в процессе их жизнедеятельности.

Гуморальная регуляция возникла в процессе эволюции раньше, чем нервная. Она усложнялась в процессе эволюции, в результате чего возникла эндокринная система (железы внутренней секреции).

Гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции функций организма, которая играет важную роль в поддержании относительного пос­тоянства состава и свойств внутренней среды организма (гомеостаза) и его приспособлении к меняющимся условиям существования.


Иммунная регуляция

Иммунитет - это физиологическая функция, которая обеспечивает устойчивость организма к действию чужеродных антигенов. Иммунитет человека делает его невосприимчивым ко многим бактериям, вирусам, грибкам, глистам, простейшим, различным ядам животных, обеспечивает защиту организма от раковых клеток. Задачей иммунной системы является распознавать и разрушать все чужеродные структуры.

Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител , которые, например, могут связывать избыток гормонов.

Иммунологическая реакция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая реакция носит прицельный характер и тем самым напоминает нервную регуляцию.

Интенсивность иммунного ответа, в свою очередь, регулируется нейрофильным способом . Работа иммунной системы корректируется мозгом и через эндокринную систему. Такая нервная и гуморальная регуляция осуществляется с помощью нейромедиаторов, нейропептидов и гормонов. Промедиаторы и нейропептиды достигают органов иммунной системы по аксонам нервов, а гормоны выделяются эндокринными железами не­родственно в кровь и таким образом доставляются к органам иммунной системы. Фагоцит (клетка иммунитета), уничтожает бактериальные клетки

Начало формы

Год выпуска: 2003

Жанр: Биология

Формат: DjVu

Качество: Отсканированные страницы

Описание: Для последних лет характерно значительное повышение интереса к психологии и смежным с ней наукам. Результатом этого является организация большого числа вузов и факультетов, осуществляющих подготовку профессиональных психологов, в том числе в таких специфических областях, как психотерапия, педагогическая психология, клиническая психология и др. Все это создает предпосылки для разработки учебников и учебных пособий нового поколения, учитывающих современные научные достижения и концепции.
В учебном пособии «Регуляторные системы организма человека» рассматриваются естественнонаучные (прежде всего анатомические и физиологические) факты, актуальные для психологических дисциплин. Оно представляет собой целостный курс, в котором данные о высших функциях мозга излагаются на базе нейроморфоло-гических, нейроцитологических, биохимических и молеку-лярно-биологических представлений. Большое внимание уделяется информации о механизмах действия психотропных препаратов, а также о происхождении основных нарушений деятельности нервной системы.
Авторы надеются, что книга «Регуляторные системы организма человека» поможет студентам получить надежные базовые знания по целому ряду учебных курсов, посвященных анатомии и физиологии нервной системы, физиологии высшей нервной деятельности (поведения), физиологии эндокринной системы.

«Регуляторные системы организма человека»


ОСНОВЫ КЛЕТОЧНОГО СТРОЕНИЯ ЖИВЫХ ОРГАНИЗМОВ

  1. Клеточная теория
  2. Химическая организация клетки
  3. Строение клетки
  4. Синтез белков в клетке
  5. Ткани: строение и функции
СТРОЕНИЕ НЕРВНОЙ СИСТЕМЫ
  1. Рефлекторный принцип работы мозга
  2. Эмбриональное развитие нервной системы
  3. Общее представление о строении нервной системы
  4. Оболочки и полости центральной нервной системы
  5. Спинной мозг
  6. Общее строение головного мозга
  7. Продолговатый мозг
  8. Мозжечок
  9. Средний мозг
  10. Промежуточный мозг
  11. Конечный мозг
  12. Проводящие пути головного и спинного мозга
  13. Локализация функций в коре полушарий большого мозга
  14. Черепные нервы
  15. Спинномозговые нервы
  16. Автономная (вегетативная) нервная система
ОБЩАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ
  1. Синаптические контакты нервных клеток
  2. Потенциал покоя нервной клетки
  3. Потенциал действия нервной клетки
  4. Постсинаптические потенциалы. Распространение потенциала действия по нейрону
  5. Жизненный цикл медиаторов нервной системы
  6. Ацетилхолин
  7. Норадреналин
  8. Дофамин
  9. Серотонин
  10. Глутаминовая кислота (глутамат)
  11. Гамма-аминомасляная кислота
  12. Другие медиаторы-непептиды: гистамин, аспарагиновая кислота, глицин, пурины
  13. Медиаторы-пептиды
ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ
  1. Общие представления о принципах организации поведения. Компьютерная аналогия работы центральной нервной системы
  2. Возникновение учения о высшей нервной деятельности. Основные понятия физиологии высшей нервной деятельности
  3. Разнообразие безусловных рефлексов
  4. Разнообразие условных рефлексов
  5. Неассоциативное обучение. Механизмы кратковременной и долговременной памяти
  6. Безусловное и условное торможение
  7. Система сна и бодрствования
  8. Типы высшей нервной деятельности (темпераменты)
  9. Сложные типы ассоциативного обучения животных
  10. Особенности высшей нервной деятельности человека. Вторая сигнальная система
  11. Онтогенез высшей нервной деятельности человека
  12. Система потребностей, мотиваций, эмоций
ЭНДОКРИННАЯ РЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ
  1. Общая характеристика эндокринной системы
  2. Гипоталамо-гипофизарная система
  3. Щитовидная железа
  4. Паращитовидные железы
  5. Надпочечники
  6. Поджелудочная железа
  7. Эндокринология размножения
  8. Эпифиз, или шишковидная железа
  9. Тимус
  10. Простагландины
  11. Регуляторные пептиды

Общие принципы регуляции жизнедеятельности организма

На всем протяжении своего развития организм непрерыв­но обновляется, сохраняя одни свои свойства и изменяя или утрачивая другие. Однако имеются основные свойства, хотя и частично изменяющиеся, но постоянно позволяющие ему под­держивать свое существование и адекватно приспосабливаться к изменяющимся условиям внешней среды. Их всего три:

Обмен веществ и энергии,

Раздражимость,

Регуляция и саморегуляция.

Каждое из этих свойств можно проследить на клеточном, тканевом и системном уровнях, но на каждом из этих уровней они имеют свои особенности.

Организм человека является совокупностью иерархически связанных (не только взаимосвязанных, но и взаимозависи­мых, взаимоподчиненных) систем, но в то же время представ­ляет собой единую сложнейшую многоэлементную систему. Взаимосвязанная и нормальная жизнедеятельность всех со­ставных частей (органов и систем) организма возможна только при непременном условии сохранения относительного физи­ко-химического постоянства его внутренней среды. Это по­стоянство имеет динамический характер, поскольку поддер­живается не на абсолютно постоянном уровне, а в пределах допустимых колебаний основных физиологических функций. Оно называется гомеостазом.

Гомеостаз возможен благодаря механизмам регуляции и саморегуляции. Регуляция - это осуществление реакций организма и его систем, обеспечивающих адекватность протекания жизненных функций и деятельности различным ха­рактеристикам внешней среды (физическим, химическим, информационным, семантическим и др.). Регуляция выпол­няет функцию интеграции человеческого организма как еди­ного целого.

Регуляция функций органов – это изменение интенсивности их работы для достижения полезного результата согласно потребностям организма в различных условиях его жизнедеятельности.

Изменение параметров функций при поддержании их в границах гомеостаза происходит на каждом уровне органи­зма или в любой иерархической системе за счет саморегуляции, или внутренних для системы механизмов управления жизнедеятельностью. Местные механизмы саморегуляции, свойственные органам и системам, можно наблюдать на при­мерах работы сердца, желудка, кишечника или автоматизма чередований вдоха и выдоха в системе дыхания. Для осуществ­ления функций организма в целом необходима взаимосвязь и взаимозависимость функций составляющих его систем. В этом смысле можно рассматривать организм как самоорганизующу­юся и саморегулируемую систему, а саморегуляцию как свой­ство всего организма.

Деятельность организма как единого целого осуществляется благодаря регуляции со стороны нервной и гуморальной системы. Эти две системы взаимосвязаны и оказывают взаимовлияние друг на друга.

Регуляция функций в организме человека имеет в своей основе воздействие на физиологическую систему, орган или совокупность органов посредством управляющих сигналов, поступающих в виде нервных импульсов или непосредственно гуморального (химического) фактора. При анализе механизмов регуляции, как правило, рассматривают раздельно реф­лекторную и гуморальную составляющие.

Гуморальными (химическими) регуляторами могут быть некоторые соединения, поступающие в организм с пищей (на­пример, витамины), продукта жизнедеятельности клеток, об­разующиеся в процессе обмена веществ (например, углекисло­та), физиологически активные вещества, синтезируемые в тка­нях и органах (простагландины, кинины и др.), прогормоны и гормоны диффузной эндокринной системы и желез внутрен­ней секреции. Эти химические вещества поступают в ткане­вую жидкость, затем в кровь, разносятся по организму и ока­зывают влияние на клетки, ткани и органы, отдаленные от тех клеток, где они образуются. Гормоны являются важнейшими специализированными химическими регуляторами. Они могут вызывать деятельность органов (пусковой эффект), усиливать или подавлять функции (корригирующий эффект), ускорять или замедлять обменные процессы и оказывать влияние на рост и развитие организма.

Нервный механизм регуляции обладает большей скоро­стью действия по сравнению с гуморальным. В отличие от гу­моральных нервные сигналы направляются к строго опреде­ленным органам. Все клетки, ткани и органы регулируются не­рвной системой, объединяющей и приспосабливающей их дея­тельность к изменяющимся условиям среды. В основе нервной регуляции лежат безусловные и условные рефлексы.

Оба механизма регуляции взаимосвязаны, их трудно раз­граничить, так как они представляют собой разные стороны единой нейрогуморальной регуляции. Существует множество биологически активных веществ, способных оказывать влия­ние на жизнедеятельность нервных клеток и функций нервной системы. С другой стороны, синтез и выделение в кровь гумо­ральных факторов регулируются нервной системой. В совре­менном понимании нейрогуморальная регуляция - это регу­лирующее и координирующее влияние нервной системы и со­держащихся в крови, лимфе и тканевой жидкости биологиче­ски активных веществ на процессы жизнедеятельности орга­низма.

Нейрогуморальная регуляция функций организма - это регуляция деятельности организма, осуществляемая нервной и гуморальной системами. Ведущее значение принадлежит нервной системе (более быстрое реагирование организма на изменения внешней среды).

Регуляция осуществляется согласно принципов: 1) саморегуляции – организм с помощью собственных механизмов изменяет интенсивность функционирования органов и систем согласно своим потребностям в различных условиях жизнедеятельности. Пр: при беге активируется деятельность ЦНС, мышечной, дыхательной и сердечно-сосудистой систем, а в покое их активность значительно уменьшается. 2) системный принцип – функциональные системы по П.К. Анохину.

Значение и общий план строения нервной системы. Основные закономерности онтогенеза нервной системы.

Функция нервной системы: регулирует деятельность всех органов и систем, обуславливая их единство, связь с внешней средой при помощи высокодифференцированных клеток, воспринимающих и передающих информацию.

По топографическому принципу нервная система подразделяется на центральную (спинной, головной мозг) и периферическую (соматическую и вегетативную) - представлена волокнами и нервами 12 пар черепномозговых и 31 пара спинномозговых. Соматическая система иннервирует работу скелетных мышц, Вегетативная (автономная) нервная система в свою очередь делиться на симпатическую и парасимпатическую и иннервирует работу внутренних органов.

Нервная система регулирует: 1) поведение организма во внешней среде. Эту регуляцию И.П. Павлов назвал ВНД; 2) регулирует работу внутренних органов - низшая нервная деятельность.

Центральной нервной системе (ЦНС) принадлежит веду­щая роль в организации адаптационных процессов, протекаю­щих в ходе индивидуального развития. Поэтому динамика морфо-функциональных преобразований в этой системе ска­чивается на характере деятельности всех систем организма.

Количество нейронов ЦНС достигает максимального ко­личества у 24-недельного плода и остается постоянным до по­жилого возраста. Дифференцированные нейроны уже не спо­собны к делению, и постоянство их численности играет основ­ную роль в накоплении и хранении информации. Глиальные клетки продолжают оставаться незрелыми и после рождения, что обусловливает дефицит их защитной и опорной функций для ткани мозга, замедленные обменные процессы в мозге, его низкую электрическую активность и высокую проницаемость гемато-энцефалического барьера.

К моменту рождения мозг плода характеризуется низкой чувствительностью к гипоксии, низким уровнем обменных процессов (метаболизма) и преобладанием в этот период ана­эробного механизма получения энергии. В связи с медленным синтезом тормозных медиаторов в ЦНС плода и новорожден­ного легко возникает генерализованное возбуждение даже при небольшой силе раздражения. По мере созревания мозга активность тормозных процессов нарастает. На ранних стадиях внутриутробного развития нервный контроль функций осуществляется преимущественно спинным мозгом. В начале плодного периода (восьмая-десятая неде­ли развития) появляется контроль продолговатого мозга над спинным. С 13-14 недели появляются признаки мезенцефального контроля нижележащих отделов ЦНС. Корригирующие влияния коры на другие структуры ЦНС, механизмы, необхо­димые для выживания после рождения, выявляются в конце плодного периода. К этому времени определяются основные типы безусловных рефлексов: ориентировочный, защитный (избегание), хватательный и пищевой. Последний, в виде со­сательных и глотательных движений, наиболее выражен.

Развитию ЦНС ребенка в значительной мере способству­ют гормоны щитовидной железы. Снижение выработки тиреоидных гормонов в фетальном или раннем постнатальном пе­риодах приводит к кретинизму в связи с уменьшением числа и размеров нейронов и их отростков, нарушением метаболизма в мозге белка и нуклеиновых кислот, а также передачи возбуж­дения в синапсах.

В сравнении со взрослыми дети имеют более высокую воз­будимость нервных клеток, меньшую специализацию нервных центров. В раннем детстве многие нервные волокна еще не имеют миелиновой оболочки, обеспечивающей изолированное проведение нервных импульсов. Вследствие этого процесс воз­буждения легко переходит с одного волокна на другие, сосед­ние. Миелинизация большинства нервных волокон у большин­ства детей заканчивается к трехлетнему возрасту, но у некото­рых продолжается до 5-7 лет. С плохой «изоляцией» нервных волокон во многом связана высокая иррадиация нервных про­цессов, а это влечет за собой несовершенство координации реф­лекторных реакций, обилие ненужных движений и неэконо­мичное вегетативное обеспечение. Процессы миелинизации нор­мально протекают под влиянием тиреоидных и стероидных гормонов. По мере развития, «созревания» нейронов и меж­нейронных связей, координация нервных процессов улучшает­ся и достигает совершенства к 18-20 годам.

Возрастные изменения функций ЦНС обусловлены и дру­гими морфологическими особенностями развития. Несмотря на то, что спинной мозг новорожденного является наиболее зрелой частью ЦНС, его окончательное развитие завершается одновременно с прекращением роста. За это время его масса увеличивается в 8 раз.

Основные части головного мозга выделяются уже к треть­ему месяцу эмбрионального периода, а к пятому месяцу эмбрио­генеза успевают сформироваться основные борозды больших полушарий. Наиболее интенсивно головной мозг человека раз­вивается в первые 2 года после рождения. Затем темпы его раз­вития немного снижаются, но продолжают оставаться высоки­ми до 6-7 лет, когда масса мозга ребенка достигает 80% массы мозга взрослого.

Головной мозг развивается гетерохронно. Быстрее всего идет созревание стволовых, подкорковых и корковых структур, регулирующих вегетативные функции организма. Эти отделы по своему развитию уже в 2-4 года похожи на мозг взрослого человека . Окончательное формирование стволовой части и промежуточного мозга завершается только в 13-16 лет. Пар­ная деятельность полушарий головного мозга в онтогенезе ме­няется от неустойчивой симметрии к неустойчивой асиммет­рии и, наконец, к устойчивой функциональной асимметрии. Клеточное строение, форма и размещение борозд и извилин проекционных зон коры приобретают сходство со взрослым мозгом к 7 годам. В лобных отделах это достигается только к 12 годам. Созревание больших полушарий полностью заверша­ется только к 20-22 годам.

В возрасте 40 лет начинаются процессы дегенерации в ЦНС. Возможна демиелинизация в задних корешках и прово­дящих путях спинного мозга. С возрастом падает скорость рас­пространения возбуждения по нервам, замедляется синаптическое проведение, снижается лабильность нервных клеток. Ослабляются тормозные процессы на разных уровнях нервной системы. Неравномерные, разнонаправленные изменения в от­дельных ядрах гипоталамуса приводят к нарушению координа­ции его функций, изменениям в характере вегетативных реф­лексов и в связи с этим к снижению надежности гомеостатического регулирования. У пожилых людей снижается реактив­ность нервной системы, ограничиваются возможности адапта­ции организма к нагрузкам, хотя у отдельных лиц и в 80 лет функциональное состояние ЦНС и уровень адаптационных процессов могут сохраняться такими же, как и в среднем зре­лом возрасте. На фоне общих изменений в вегетативной не­рвной системе наиболее заметно ослабление парасимпатиче­ских влияний.

Центральная нервная система является наиболее устой­чивой, интенсивно функционирующей и долгоживущей сис­темой организма. Ее функциональная активность обеспечива­ется длительным сохранением в нервных клетках нуклеино­вых кислот, оптимальным кровотоком в сосудах мозга и дос­таточной оксигенацией крови. Однако при нарушении этих условий функциональные возможности ЦНС резко уменьша­ются.

Подразделяется на центральную и периферическую. В зависимости от характера иннервации органов и тканей нервную систему делят на соматическую и вегетативную.

Головной мозг расположен в мозговом отделе черепа. Он состоит из пя­ти отделов, выполняющих различные функции: продолговатый, задний (варолиев мост и мозжечок), средний, промежуточный, передний мозг (большие по­лушария).

1. Продолговатый мозг отвечает за , дыхание, сердечную
деятельность, защитные рефлексы (рвота, кашель).

2. Задний мозг. Варолиев мост - проводящие пути между мозжечком и
полушариями. Мозжечок регулирует двигательные акты (равновесие, коорди­нация движений).

3. Средний мозг - поддерживает тонус мышц, отвечает за ориентировочные, сторожевые и оборонительные рефлексы на зрительные и звуковые раз­дражители.

4. Промежуточный мозг состоит из таламуса, эпи-и гипотоламуса. Свер­ху к нему прилегает эпифиз, а снизу - гипофиз. Он регулирует все сложные
двигательные рефлексы, координирует работу внутренних органов и участвует
в гуморальной регуляции обмена веществ, потребление воды и пищи, поддер­жании постоянной температуры тела.

5. Передний мозг осуществляет психическую деятельность: память, речь,
мышление, поведение. Состоит из серого и белого вещества. Серое вещество
образует кору и подкорковые структуры и представляет собой совокупность тел
нейронов и их коротких отростков (дендритов), белое вещество - длинных от­
ростков - дексонов.

Спинной мозг расположен в костном позвоночном канале. Он имеет вид белого шнура диаметром около одного сантиметра. В нем есть 31 сегмент, от которых отходит пара смешанных спинномозговых нервов. У него две функции - рефлекторная и проводниковая.


1. Рефлекторная функция - осуществление двигательных и вегетативных рефлексов (сосудодвигательный, пищевой, дыхательный, дефекации, мо­чеиспускания, половой).

2. Проводниковая функция - проведение нервных импульсов от голов­ного мозга к телу и наоборот.

Вегетативная нервная система управляет деятельностью внутренних органов, желез и не подчиняется воле человека. Она состоит из ядер - скопле­ние нейронов в головном и спинном мозге, вегетативных узлов - скопление нейронов вне ЦНС и из нервных окончаний. Вегетативная система делится на симпатическую и парасимпатическую.

Симпатическая система мобилизует силы организма в экстремальной ситуации. Ее ядра находятся в спинном мозге, а узлы вблизи него. При ее воз­буждении учащаются и усиливаются сердечные сокращения, происходит пере­распределение крови от внутренних органов к мышцам, снижении железистой двигательной функции желудка и кишечника.

Парасимпатическая система. Ее ядра находятся в продолговатом, сред­нем мозге и частично в спинном мозге, а функция - противоположна симпати­ческой - система «отбоя» - способствует протеканию восстановительных про­цессов в организме. Строение и функция гуморальной регуляторной системы организма человека.

Гуморальную регуляцию осуществляют железы внутренней и смешан­ной секреции.

1. Железы внутренней секреции (эндокринные железы) не имеют выводных протоков и выделяют свои секреты непосредственно в кровь.

2. Железы смешанной секреции - одновременно осуществляют и внеш­нюю и внутреннюю секрецию (поджелудочная железа, половые железы) - вы­деляют секреты в кровь и в полость органов.

Эндокринные железы выделяют гормоны. Всем им свойственна высокая интенсивность оказываемого воздействия, его дистантность - оказания дейст­вия на расстоянии от места продукции; высокая специфичность действия, а также идентичность действий гормонов у животных и человека. Гормоны ока­зывают свое влияние на организм различными путями: через нервную систему, гуморальную систему и непосредственно воздействуя на рабочие органы и фи­зиологические процессы.

Эндокринноактивных желез большое количество: гипоталамус, гипофиз, эпифиз, тимус, половые железы, надпочечники, щитовидная железа, паращито-видная железа, плацента, поджелудочная железа. Разберем функции некоторых из них.

Гипоталамус - участвует в регуляции вводно-солевого обмена, через син­тез антиудиритеческого гормона; в недержании гомоэтермии; контроле эмоций и поведения, деятельность органов размножения; обуславливает лактацию.

При гипофункции развивается несахарный диабет вследствие очень силь­ного и обильного диуреза. При гиперфункции появляются отеки, артериальная гиперемия, нарушается сон.

Гипофиз находится в головном мозге, он продуцирует гормон роста, а та­кже деятельность других желез. Выработка лактогенного гормона и гормона, регулирующего пигментацию кожи и волос. Гормоны гипофиза включают окисление липидов . При гипофункции в детском возрасте развивается карлико­вость (нанизм). При гиперфункции в детском возрасте развивается гигантизм, а во взрослом акромегалия.

Щитовидная железа выделяет йодозавимый гормон тироксин. При ги­пофункции в детском возрасте развивается кретинизм - задержка роста, психи­ческого и полового развития. Во взрослом возрасте - териоидный зоб, снижа­ются интеллектуальные возможности, повышается содержание холестерина в крови, нарушается менструальный цикл, часто происходит невынашивание бе­ременности (преждевременные роды и выкидыши). При гипертериозе развива­ется базедова болезнь.

Поджелудочная железа - выделяет два противоположных по действию гормона, регулирующих обмен углеводов - глюкогон, отвечает за распад гли­когена до глюкозы, а инсулин - за синтез из глюкозы гликогена. При дефиците

глюкогона и избытке инсулина развивается тяжелейшая гипогликемическая кома. При избытке глюкогона и дефиците инсулина - сахарный диабет.



Понравилась статья? Поделитесь ей
Наверх