Способ изготовления лопаток газотурбинного двигателя. О турбинах, авиационных и не только…

1

В работе рассмотрены способы изготовления компрессорных лопаток высокого давления газотурбинных двигателей. Первым способом является обработка профиля пера лопатки фрезерованием на координатных станках с числовым управлением с последующей ручной доработкой. Вторым способом является электрохимическая обработка, при которой исключены механические и ручные операции обработки пера лопаток. Изучены проблемы изготовления лопаток компрессора способом фрезерования. Представлены актуальные задачи, решение которых позволит повысить точность, качество и исключить ручные шлифовальные и полировальные работы. Приведены преимущества электрохимической обработки. Представлены и проанализированы затраты и трудоемкость на подготовку производства, затраты и трудоемкость на изготовление лопаток. Также в работе представлены результаты измерений компрессорных лопаток. Лучшие результаты по точности и стабильности геометрии профиля пера были получены в результате электрохимической обработки.

электрохимическая обработка

фрезерование

сравнительный анализ

газотурбинный двигатель

1. Галиев В.Э., Фаткуллина Д.З. Перспективный технологический процесс изготовления прецизионных компрессорных лопаток [Текст] / В.Э. Галиев, Д.З. Фаткуллина // Вестник УГАТУ. – 2014. – № 3. – С. 9–105.

2. Нехорошеев М.В. Использование объемного и плоского моделирования двухэлектродной электрохимической ячейки в программе ANSYS [Текст] / М.В. Нехорошеев, Н.Д. Проничев, Г.В. Смирнов // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. – 2012. – № 3–3. – С. 98–102.

3. Лунев А.Н. Оптимизация параметров фрезерования лопаток ГТД на станках с ЧПУ [Текст] / А.Н. Лунев, Л.Т. Моисеева, М.В. Соломина // Известия высших учебных заведений. Авиационная техника. – 2007. – № 2. – С. 52–55.

4. Нехорошеев М.В. Автоматизация проектирования технологии электрохимической обработки пера лопаток ГТД на основе компьютерного моделирования процесса формообразования [Текст] / М.В. Нехорошеев., Н.Д. Проничев., Г.В. Смирнов // Известия Самарского научного центра Российской академии наук. – 2013. – Т. 15, № 4–6. – С. 897–900.

5. Павлинич С.П. Перспективы применения импульсной электрохимической обработки в производстве деталей газотурбинных двигателей [Текст] / С.П. Павлинич // Вестник УГАТУ. – 2008. – № 2. – С. 105–115.

6. Производство газотурбинных двигателей [Текст]: справочное пособие / А.М. Абрамов, И.Л. Зеликов, М.Ф. Идзон и др. – М.: Издательство «МАШИНОСТРОЕНИЕ», 1996. – 472 с.

7. Разработка стратегии создания инновационных технологических процессов [Текст]: Учебное пособие / Н.Д. Проничев, А.П. Шулепов, Л.А. Чемпинский, А.В. Мещеряков. – Самара: Самарский государственный аэрокосмический университет, 2011. – 166 с.

8. Технология производства авиационных газотурбинных двигателей [Текст]: Учебное пособие для вузов / Ю.С. Елисеев, А.Г. Бойцов, В.В. Крымов, Л.А. Хворостухин. – М.: Машиностроение, 2003. – 512 с.

9. Толкачев А.В. Повышение производительности вибрационного полирования лопаток компрессора ГТД абразивными гранулами: дисс... канд. тех. наук. – Рыбинск, 2015. – 136 с.

10. Туранов А.В. К методике расчета режимов фрезерования поверхностей лопаток ГТД на станках с ЧПУ [Текст]/А.В. Туранов, Л.Т. Моисеева, А.Н. Лунев // Известия высших учебных заведений. Авиационная техника. – 2005. – № 2. – С. 60–64.

Лопатки компрессора являются ответственными и массовыми деталями газотурбинного двигателя. От правильно выбранной технологии изготовления лопаток будет зависеть ресурс и конечная стоимость двигателя.

Обеспечение заданного ресурса работы лопаток во многом зависит от ряда технологических факторов. Состояние поверхностного слоя лопаток, наличие следов предыдущей обработки (шероховатость поверхности), являющихся концентраторами напряжения, оказывают существенное влияние на длительную и усталостную прочность лопаток при эксплуатации .

Поэтому изготовление лопаток, даже в мелкосерийном производстве, требует применения современных технологических процессов, высокопроизводительного оборудования и автоматизации процесса изготовления и контроля.

Одной из широко применяемых технологий изготовления лопаток компрессора газотурбинного двигателя является фрезерование на координатных станках с последующей ручной доработкой в частности финишных операций . Однако данная технология имеет ряд недостатков:

Низкая точность и производительность;

Необходимость применения ручных операций;

Высокая квалификация рабочего на окончательных ручных операциях по доводке профиля пера лопаток;

Вредные условия для рабочих при выполнении ручных шлифовально-полировальных работ;

Высокая стоимость и быстрый износ режущего инструмента;

Требуется 100 % контроль.

Актуальными задачами изготовления лопаток компрессора газотурбинного двигателя являются:

Автоматизация финишных операций обработки профиля пера. Исключение ручных операций позволит повысить качество и стабильность технологического процесса изготовления лопаток газотурбинного двигателя;

Использование физико-химических способов обработки позволит исключить использование дорогостоящих режущих инструментов и повысить производительность обработки;

Автоматизация контроля лопаток газотурбинных двигателей.

Одним из наиболее эффективных и перспективных направлений изготовления лопаток является электрохимическая обработка. Преимуществами электрохимической обработки являются :

Сокращение сроков изготовления лопаток и возможность эффективной обработки труднообрабатываемых материалов;

Качество поверхности после электрохимической обработки требует минимальной последующей финишной обработки;

Высокая стойкость инструмента;

Кроме этого, отмечается, что лопатки после ЭХО имеют повышенную газодинамическую устойчивость, пониженный разброс частот собственных колебаний, повышенную усталостную прочность за счет уменьшения остаточных напряжений .

Известно, что зарубежные производители ГТД (такие как General Electric Company, MTU Aero Engines GmbH, Volvo Aero Corporation и др.) успешно применяют ЭХО как в качестве операции предварительного формообразования межлопаточного канала моноколес с использованием непрофилированных электродов, так и для размерной обработки пера лопаток профильными электродами инструментами .

В этой области начата работа и достигнуты значительные успехи в НИИД (г. Москва), казанской (КАИ, КГТУ), самарской (САИ) и уфимской (НИИ ПТиТ ЭХО при УГАТУ) школах электрохимической обработки и др. .

Для анализа было выбрано два способа изготовления лопаток компрессора высокого давления газотурбинного двигателя.

Первый способ. Изготовление лопаток на координатно-фрезерных станках, рис. 1. В качестве исходной заготовки используется фрезерованный параллелепипед, изготовленный с точностью 0,1 мм. Формирование замка типа «ласточкин хвост» производится на горизонтально протяжном станке. Далее производится комплексное фрезерование всех элементов проточной части лопатки на координатных станках с числовым управлением с припуском под чистовую обработку. В процессе комплексного фрезерования заготовка базируется за хвостовик типа «ласточкин хвост». Конечным этапом изготовления лопаток является ручная обработка или обработка бесконечной лентой .

Второй способ. Изготовление лопаток на электрохимических станках, рис. 2. В качестве исходной заготовки используется шлифованный параллелепипед, изготовленный с точностью 0,02 мм. В процессе электрохимической обработки происходит формирование трактовых поверхностей с припуском под чистовую обработку. Далее производится формирование хвостовика типа «ласточкин хвост» на горизонтально протяжном станке. Окончательная операция осуществляется на виброшлифовальном станке .

Проанализируем оба способа изготовления компрессорных лопаток. Наиболее полную картину можно получить, сопоставляя затраты и трудоемкость на подготовку производства, затраты и трудоемкость на изготовления детали, а также точность и стабильность изготовления лопаток. Для анализа были изготовлены две партии лопаток вышеупомянутыми способами.

Рис. 1. Основные этапы изготовления лопаток компрессора

Рис. 2. Основные этапы изготовления лопаток компрессора

Таблица 1

Основные затраты на подготовку производства

Плановая трудоемкость н.ч.

Стоимость 1 шт. руб.

В т.ч. материальные затраты

изготовления

переточки

изготовления

переточки

Фрезерование

Фреза № 1

Фреза № 2

Фреза № 3

Фреза № 4

Фреза № 5

Фреза № 6

Фреза № 7

Приспособление

Электрохимическая обработка

Электрод № 1

Электрод № 2

Приспособление

Рис. 3. Стоимость изготовления средств технологического оснащения

Рис. 4. Трудоемкость изготовления средств технологического оснащения

В процессе проектирования технологического процесса существенными факторами являются время и затраты на подготовку производства (табл. 1). В табл. 1 были занесены основные затраты на изготовление оснастки для фрезерования (первый способ) и электрохимической обработки (второй способ) режущих инструментов и электродов инструментов. При рассмотрении табл. 1 становится очевидным, что затраты на материалы и трудоемкость на подготовку производства для электрохимической обработки выше, чем для фрезерования.

Суммарная трудоемкость и стоимость изготовления средств технологического оснащения представлены на рис. 3 и 4.

Трудоемкость и стоимость основных операций изготовления лопаток представлены в табл. 2. Высокие требования по точности изготовления заготовки под электрохимическую обработку ведут к применению дополнительной операции «плоскошлифовальная». Время затраченное на обработку комплекса поверхностей лопаток компрессора электрохимических способом ниже, чем при фрезеровании. Также из табл. 2 видно, что по технологии «фрезерование» требуется применение ручных доводочных работ, что повышает себестоимость готовой продукции.

Суммарная трудоемкость и стоимость изготовления одной лопатки представлены на рис. 4 и 5.

Таблица 2

Трудоемкость и стоимость основных операций изготовления лопатки

Трудоемкость, н.ч.

Стоимость, руб.

Фрезерование

Фрезерование

Фрезерная

93 руб. 90,3 коп.

93 руб. 90,30 коп.

Шлифовальная

26 руб. 27,50 коп.

Протягивание замка

7 руб. 43,10 коп.

7 руб. 43,10 коп.

Обработка трактовых поверхностей

100 руб. 00 коп.

70 руб. 00 коп.

Ручная операция

40 руб. 30,20 коп.

Виброшлифовальная

5 руб. 40 коп.

Рис. 5. Суммарная трудоемкость изготовления одной детали

Рис. 6. Суммарная стоимость изготовления одной детали

На рис. 7 приведен сравнительный анализ затрат на изготовление одной детали. При расчете затрат учитывались затраты на изготовление средств технологического оснащения с последующей их переточкой и ремонтом. Как видно из рисунка, повышение программы выпуска деталей снижает стоимость одной детали. Однако существенные затраты приходятся на лопатки изготовленные по технологии «фрезерование». Данное явление объясняется быстрым износом режущего инструмента.

Практическое отсутствие износа электродов в процессе электрохимической обработки снижает стоимость изготовления лопаток.

Точность изготовления лопаток и стабильность технологических процессов рис. 1 и 2, сведены на рис. 8.

Измерения готовых лопаток проводились на контрольно измерительной машине. Измерения проводились по входным и выходным кромкам в четырех сечениях. Из рисунка следует, что наибольшая точность и повторяемость получения геометрических размеров кромок лопаток достигается методом электрохимической обработки. Существенное повышение стабильности и точности изготовления лопаток методом электрохимической обработки объясняется исключением ручных операций.

В совокупности, рассматривая полученные данные, можно сделать следующие выводы.

Применение в процессе электрохимической обработки более сложной оснастки существенно повышает затраты и время на подготовку производства. Таким образом, фрезерование является более гибким и быстро переналаживаемым способом обработки. Затраты и трудоемкость на подготовку производства обработки фрезерованием ниже чем электрохимической обработки (рис. 1 и 2).

Стоимость изготовления лопаток по технологии «фрезерование» выше, чем при электрохимической обработке. Повышение стоимости связано с тем, что после операции фрезерования требуется применять ручные операции.

Рис. 7. Сравнительный график затрат на изготовление одной детали в зависимости от количества выпущенных лопаток

Рис. 8. Точность изготовления кромок

Затраты на изготовление лопаток по технологии «фрезерование» выше, чем при электрохимической обработке (рис. 7). Существенные затраты составляет покупка дорогого режущего инструмента.

Точность и стабильность электрохимической обработки значительно выше.

Библиографическая ссылка

Валиев А.И. СРАВНИТЕЛЬНЫЙ АНАЛИЗ ИЗГОТОВЛЕНИЯ ЛОПАТОК КОМПРЕССОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ // Фундаментальные исследования. – 2017. – № 5. – С. 36-41;
URL: http://fundamental-research.ru/ru/article/view?id=41503 (дата обращения: 28.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

ПАО «Уфимское моторостроительное производственное объединение» (УМПО) запустило на участке перспективного литья лопаток самую крупную в Европе плавильно-заливочную установку лопаточного литья. Размеры оборудования — 9 метров в ширину, 12 — в длину и 8,5 в высоту. Установка предназначена для изготовления заготовок в ходе производства деталей двигателя перспективного гражданского самолета МС-21. Новое оборудование позволяет плавить от 20 до 150 кг специального сплава, что даёт возможности для заливки большого количества лопаток всего за один цикл.

Новая ПЗУ будет активно задействована в реализации совместного проекта УМПО и Московского института стали и сплавов (НИТУ «МИСиС») по разработке и внедрению ресурсоэффективной технологии изготовления пустотелых литых турбинных лопаток. Она будет применяться в производстве не только авиационных газотурбинных двигателей, но и станций перекачки нефти и газа, — рассказал куратор перспективной программы, заместитель начальника управления технического развития и перевооружения Павел Алинкин.

В начале ноября 2015 года, данный проект выиграл субсидию в конкурсе Министерства образования РФ по Постановлению № 218 Правительства РФ. Грант поможет УМПО сократить сроки внедрения инновации в опытное и серийное производство.

Объединение имеет богатый опыт сотрудничества с вузами России по 218-му Постановлению. В настоящее время предприятие работает над еще двумя технологиями: по производству тонкостенных крупногабаритных титановых отливок (с МИСиС и УГАТУ) и деталей из жаропрочного алюминия (с УГАТУ и другими вузами). Два проекта — также с МИСиС и УГАТУ — успешно завершены, их результаты в настоящее время внедрены в производство. Это технология изготовления опоры турбины вертолетного двигателя ВК-2500 и производство моноколес и блисков методом линейной сварки трением.

Впервые в России удалось отлить (метод называется литье по выплавляемым моделям) из сплава алюминида титана инновационные лопатки, которые вдвое легче, чем их аналоги на основе никеля. Технология изготовления новых лопаток уже запущена в производство на Уфимском моторостроительном производственном объединении (ПАО «УМПО»). Ожидается, что лопатки из интерметаллида титана будут использоваться в новом российском двигателе ПД-14 для российского ближне-среднемагистрального пассажирского самолета МС-21. Снижая массу воздушного судна, новая разработка позволит перевозить больше пассажиров с меньшим расходом топлива.

«Сегодня изготовление изделий из алюминида титана очень востребовано в гражданской авиации. Наша разработка не уступает мировым аналогам из Европы и США. Очень важно, что это полностью отечественная разработка: лопатки могут производиться на отечественном оборудовании и из отечественных материалов», — рассказал в интервью руководитель исследовательской группы, заведующий кафедрой «Технологии литейных процессов и художественной обработки материалов» НИТУ «МИСиС», профессор Владимир Белов. Переход на новую технологию позволит заметно снизить массу двигателя, в результате станет возможным перевозить больше пассажиров или грузов на длительные расстояния. Кроме того, новая технология изготовления лопаток значительно уменьшит действующее центробежное напряжение в компрессоре и турбинах авиадвигателей, снизит инерцию турбин и компрессоров, а тем самым позволит уменьшить расход топлива, выбросы в атмосферу парниковых газов.

Изобретение относится к области машиностроения, а именно к способам изготовления лопаток авиационных газотурбинных двигателей (ГТД) из материалов, способных деформироваться в холодном или горячем состоянии. Изготавливают заготовку лопатки. Образовывают аэродинамический профиль в каждом сечении пера. Образовывают хвостовик. Проводят отделочные операции. Образование аэродинамического профиля и хвостовика осуществляют одновременной закруткой пера и хвостовика и их калибровкой в штампе. Плоскую заготовку изготавливают с сечениями, площадь и протяженность которых равна соответственно площади соответствующих сечений отштампованной лопатки и протяженности хорд данных сечений. В результате обеспечивается увеличение коэффициента использования металла и точности изготовления, повышение качества широкохордных лопаток ГТД и снижение затрат времени. 2 ил.

Предлагаемое изобретение относится к области машиностроения, а именно к способам изготовления лопаток авиационных газотурбинных двигателей (ГТД) из материалов, способных деформироваться в холодном или горячем состоянии.

В современных конструкциях вентиляторов авиационных двигателей широкое применение находят крупногабаритные широкохордные лопатки, позволяющие существенно снизить шумность вентилятора, увеличить тягу и в целом повысить экономичность газотурбинного двигателя.

Известны традиционные технологии производства лопаток, включающие в себя изготовление штамповкой заготовки лопатки с поэтапной закруткой профиля пера и припусками по перу и замку, с последующим удалением припусков обработкой резанием, электрофизическими и иными методами (Крымов В.В., Елисеев Ю.С., Зудин К.И. Производство лопаток газотурбинных двигателей. М., "Машиностроение / Машиностроение - Полет", 2002 г., стр.66-100, 101-197).

Данный способ становится чрезвычайно трудоемким и металлозатратным при производстве широкохордных лопаток из-за их больших габаритов (длина может достигать 1,5 м, при отношении высоты к хорде менее 2) и сложной геометрической формы.

Сложная конфигурация предварительных переходов снижает технологичность выполнения сопутствующих операций, начиная от зачистки дефектов штамповки, до использования специализированных ложементов для нагрева перед следующим штамповочным переходом.

Уменьшение припуска на механическую обработку профиля пера приводит к росту удельных усилий штамповки, а одновременное получение его окончательной конфигурации требует увеличение жесткости штампового комплекта в сборе для гашения высоких сдвигающих усилий при штамповке.

Одновременная окончательная доводка профиля пера по толщине и конфигурации, несмотря на известные способы механического, химического и электрохимического фрезерования, является высоко трудоемкой операцией.

Известен способ изготовления лопаток газотурбинного двигателя (патент РФ №2257277) - прототип. Суть способа заключается в том, что на первом этапе проектирования технологического процесса перерабатывают конструкторский чертеж лопатки, раскручивая и раздвигая между собою расчетные сечения пера, «укладывая» при этом хорды раскручиваемых сечений в одной плоскости. Полученный модифицированный чертеж лопатки является основой для проектирования заготовки-штамповки. Заготовка-штамповка, имеющая раскрученный профиль пера, изготавливается методами объемной штамповки с припуском по перу и замку под дальнейшую обработку резанием. После удаления чернового припуска, например фрезерованием, выполняют закрутку профиля пера в горячем состоянии с привлечением специальных устройств. Впоследствии, изготовленная таким способом заготовка подвергается всем традиционным стадиям технологического процесса изготовления лопатки.

Недостатком способа является то, что определение силовых параметров по расчету процесса горячей закрутки пера лопатки, имеющей сечение аэродинамического профиля, переменным по длине проблематично т.к. анализ существующих математических моделей определения силовых параметров при скручивании ограничен рассмотрением стержней с элементарными геометрическими сечениями (круг, эллипс, квадрат, прямоугольник). Поэтому деформации при закрутке изделия неизбежно приводят к искажению аэродинамического профиля, которое может превосходить поле допуска. Подбор технологических режимов и геометрических параметров заготовки требует большого количества трудоемких и затратных по времени опытных работ для каждого типа размера широкохордной лопатки. Процесс не стабилен, зависит от многих факторов и требует наличия специального оборудования.

Для устранения вышеуказанных негативных моментов предлагается разделить операции: формирование сдаточной толщины профиля пера и формирование его контура. Дополнительно это позволяет существенно расширить спектр оборудования для выполнения первого этапа, а все сопутствующие операции адъюстажной и механической обработки данного этапа проводить на более технологичном в обработке спрямленном контуре.

В настоящем изобретении предпринимается попытка представить новый метод производства лопаток газотурбинных двигателей с оформленным контуром, методом однопереходной изотермической безоблойной окончательной штамповки (закрутка + калибровка), который сокращает или решает вышеупомянутые проблемы.

Изобретением решается задача изготовления широкохордных лопаток ГТД, сложной геометрической формы на стандартном оборудовании.

Техническим результатом настоящего изобретения является повышение качества изготовления широкохордных лопаток ГТД, а также стабильности технологического процесса при одновременном снижение затрат.

Способ изготовления лопаток газотурбинного двигателя, включающий изготовление заготовки лопатки, образование аэродинамического профиля в каждом сечении пера лопатки, образование хвостовика и проведение отделочных операций, образование аэродинамического профиля в каждом сечении пера лопатки и образование хвостовика осуществляют путем одновременной закрутки пера и хвостовика и их калибровки в штампе изотермической штамповкой, при этом изготавливают плоскую заготовку, выполненную с сечениями, площадь и протяженность которых равна соответственно площади соответствующих сечений отштампованной лопатки и протяженности хорд данных сечений.

Сущность изобретения поясняется чертежами, на которых показано:

на фиг.1 - широкохордная лопатка 1, выполненная, например, из титана или из одного из его сплавов;

на фиг.2 - спрямленная заготовка широкохордной лопатки.

Предлагаемый согласно изобретению способ изготовления лопаток газотурбинных двигателей осуществляется следующим образом.

1. Производство плоской заготовки 4 (фиг.2) методами экструзии и (или) прецизионной штамповки, а также вальцовки и (или) высадки и (или) механической обработкой плоского или сортового проката.

2. Подготовка базовых элементов 3 последующей чистовой механической обработки пера и одновременно укладочных элементов для однопереходной штамповки либо на этапе прецизионной штамповки заготовки и(или) дополнительной мех. обработки полученных ранее заготовок или получаемые путем приварки к заготовке 4 и дополнительной мех. обработки.

3. Подготовка плановой проекции заготовки для однопереходной штамповки либо на этапе прецизионной штамповки заготовки и(или) дополнительной мех. обработки полученных ранее заготовок (при этом обеспечивается равенство хорд заготовки пера 6 и хорд готового изделия 7).

4. Подготовка высотных размеров заготовки для однопереходной штамповки либо на этапе прецизионной штамповки заготовки и (или) дополнительной мех. обработки полученных ранее заготовок.

5. Применение тепла и давления к заготовке для изотермической штамповки (одновременная закрутка аэродинамического профиля («пера») 1 и хвостовика («замка») 2 с одновременной калибровкой) и производства по существу необходимой готовой внешней конфигурации и размеров профиля пера. Для высокоугловой закрутки аэродинамического профиля (более 40°) и калибровки широкохордных вентиляторных лопаток используются специально вводимые удерживающие элементы штамповой оснастки (не показаны).

6. Чистовая обработка изделия для удаления избытка материала с входной и выходной кромки (5) изотермически отштампованной внешней конфигурации для получения готового профиля пера.

7. Удаление базовых (укладочных) элементов 3 фиг.1.

8. Механическая обработка хвостовика лопатки («замка») 2.

Пример конкретного выполнения. Проведена опытная штамповка широкохордной лопатки ГТД в закрытом штампе. Материал - титановый сплав марки ВТ6. Температура штамповки не более 850°С. Инструмент нагревали до температуры не более 850°С. Размеры готовой лопатки: длина - 1200 мм, максимальная ширина хорды 620 мм.

Предлагаемый способ изготовления широкохордных лопаток позволяет разработать эффективную технологию, с применением которой возможно производство ряда лопаток для ГТД из прогрессивных металлов и сплавов.

Преимущество предложенного технического решения позволяет расширить технологические возможности стандартного оборудования, вести процесс при минимальных затратах времени. Значительно повышается коэффициент использования металла, увеличивается точность изготовления и стабильность технологического процесса.

Способ изготовления лопаток газотурбинного двигателя, включающий изготовление заготовки лопатки, образование аэродинамического профиля в каждом сечении пера лопатки, образование хвостовика и проведение отделочных операций, отличающийся тем, что образование аэродинамического профиля в каждом сечении пера лопатки и образование хвостовика осуществляют путем одновременной закрутки пера и хвостовика и их калибровки в штампе изотермической штамповкой, при этом изготавливают плоскую заготовку, выполненную с сечениями, площадь и протяженность которых равна соответственно площади соответствующих сечений отштампованной лопатки и протяженности хорд данных сечений.

Похожие патенты:

Изобретение относится к машиностроению, а именно к обработке металлов ультразвуковой ковкой, и может быть использовано для изготовления деталей с повышенными технико-эксплуатационными характеристиками и для формирования закругленных кромок с переменной толщиной.

Изобретение относится к обработке металлов давлением и может быть использовано в авиационной промышленности при изготовлении заготовок лопаток с двумя хвостовиками или с одним хвостовиком и бандажной полкой. Нагретую заготовку устанавливают в контейнер между двумя полуматрицами составной матрицы, выполненной с каналом. При этом часть заготовки располагают на нижнем пуансоне. Заготовку деформируют с образованием шейки путем смыкания полуматриц. Затем формируют один из хвостовиков лопатки движением нижнего пуансона вверх после остановки полуматриц. Заготовку выдавливают через канал составной матрицы верхним пуансоном при движении нижнего пуансона в нижнее положение. При этом часть заготовки оставляют в контейнере и формируют штамповку переменного сечения, расширяющуюся по направлению к оставшейся в контейнере части заготовки. В результате обеспечиваются расширение спектра получаемых штамповок, увеличение коэффициента использования металла, повышение прочностных характеристик изделия. 2 ил.

Изобретения относятся к обработке металлов давлением и могут быть использованы при изготовлении лопаток турбин методом горячей штамповки. Исходную заготовку размещают в горизонтальном приемнике разъемной матрицы, состоящей из двух полуматриц с вертикальной плоскостью разъема. Полуматрицы выполнены с горизонтальным сквозным отверстием, образующим приемник, и радиально расположенными относительно приемника полостями под лопатки. К обоим торцам заготовки прикладывают осевое усилие посредством расположенных с обеих сторон пуансонов. В результате производят деформирование заготовки до полного заполнения полостей под лопатки и получают многоштучную поковку. Поковка состоит из лопаток, соединенных пресс-остатком. Поковку извлекают из штампа и отделяют лопатки от пресс-остатка. В результате обеспечивается повышение пластичности материала заготовки при его истечении в полости полуматриц, снижение технологического усилия, а также повышение точности получаемых изделий и коэффициента использования материала. 2 н. и 2 з.п. ф-лы, 18 ил. 1 пр.

Изобретение относится к области машиностроения, а именно к способам изготовления лопаток авиационных газотурбинных двигателей из материалов, способных деформироваться в холодном или горячем состоянии

Для новых поколений газотурбинных двигателей (ГТД) характерной особенностью является замена традиционно используемых дисков с лопатками на моноколёса - блиски (blisk от сокращения английских слов bladed disk) и аналогичные бездисковые кольцевые конструкции - блинги (bling от сокращения английских слов bladed ring).

Для повышения жёсткости, прочности и дополнительного облегчения конструкций типа блинг разработаны технологии кольцевых вставок из металлокомпозитов, например Ti-SiC.

Моноколёса и крыльчатки давно используются в производстве малых ГТД (для вертолётов, бизнес-авиации, наземной техники). Но только в последние годы их начали применять для двигателей военной и гражданской авиации, что обусловлено рядом причин.

  1. Моноколёса позволяют существенно уменьшить размеры обода диска за счёт устранения замковых соединений и снизить массу конструкций типа «блиск» на 30 %, а конструкции «блинг» - на 70 %.
  2. Для создания компактных конструкций ГТД с повышенными удельными параметрами у компрессоров несколько осевых ступеней заменяют одним широкохордным моноколесом или крыльчаткой. Это позволяет увеличить угловую скорость вращения ротора (до 50 — 80 тыс. об/мин) и напорность ступеней.
  3. Для малых диаметров колёс размещение лопаток с хвостовиками на ободе диска становится проблематичным.

Применяемые в отечественных ГТД моноколёса, несмотря на относительно небольшую номенклатуру, значительно отличаются друг от друга конструктивным исполнением. Для изготовления моноколёс в основном применяются титановые сплавы ВТЗ-1, ВТ5-1, ВТ-6, ВТ-8, ВТ-25, а также алюминиевые сплавы АК4-1, АК-6, ВД-17.

Размеры монолитных колёс находятся в диапазоне 170 — 700 мм по наружному диаметру и 25 — 175 мм по ширине. Количество лопаток, даже на колёсах примерно одного диаметра, различно. Высота лопаток составляет 0 — 200 мм, причём для осевых колёс она значительно выше, чем для центробежных.

Толщина лопаток составляет от 0,9 до 3,0 мм, что в значительной степени влияет на жёсткость технологической системы и требует продуманного выбора технологических переходов при обработке, а в некоторых случаях применения промежуточной заливки межлопаточного пространства перед фрезерованием.

Точность изготовления профилей лопаток моноколёс должна соответствовать ОСТ 102571-86 «Предельные отклонения размеров, формы и расположения пера», а шероховатость трактовых поверхностей - Ra = 0,32 — 0,63 мкм.

Почти во всех конструкциях монолитных колёс профиль межлопаточного пространства строится с использованием простых образующих, что облегчает составление управляющих программ обработки. Отечественные 5-координатные фрезерные станки типа ДФ-224Р, ДФ-966, МА 55С5Н, имеющие угол поворота инструмента ±22,5°, позволяют обрабатывать моноколёса с простой формой межлопаточных каналов по 3-4 координатам. Фрезерование лопаток моноколёс, имеющих сложные поверхности, на таких станках с достаточной технологической точностью невозможно, так как обработка должна производиться одновременно по 5 координатам.

Увеличение центробежных сил и, следовательно, контактных давлений и вибраций в замковых соединениях лопаток с диском приводит к фреттинг-коррозии, вызывающей снижение усталостной прочности и ускоряющей появление усталостных трещин, что, в свою очередь, способствует отрыву лопаток и выходу двигателя из строя. Снизить напряжения в соединении лопатки с диском можно благодаря применению высоконапорных моноколёс.

Это связано также с успехами, полученными в области технологии обработки межлопаточных каналов, появлением прогрессивного оборудования и современным проектированием лопаточных машин.

Таким образом, несмотря на высокую трудоёмкость изготовления, моноколёса имеют ряд преимуществ, которые на современном этапе позволяют им успешно конкурировать с осевыми сборными колёсами компрессоров ГТД.

У двигателя пятого поколения EJ-200 ротор компрессора состоит из семи блисков, включая вентиляторный блиск с широкохордными лопатками. Несколько ступеней блисков имеет двигатель серии BRR 700. По мнению специалистов, отработанная технология изготовления моноколёс в итоге оказывается экономически более выгодной, чем традиционное производство дисков и лопаток.

Западные производители газотурбинных двигателей используют для изготовления дисков три базовые технологии:

  • фрезерование лопаток в монолитной заготовке;
  • электрохимическая прошивка межлопаточных каналов после предварительного фрезерования или в монолитной заготовке;
  • сварка лопаток с диском методом линейной сварки трением.

Каждая из этих технологий имеет свои преимущества и недостатки и используется в зависимости от сложности формы лопаток, материала и габаритов.

Фрезерование блисков является традиционным способом. Он особенно эффективен при опытном производстве. В серийном производстве этот метод может быть экономически выгоден при изготовлении титановых блисков сравнительно небольших размеров. Блиски из высокопрочных сталей и никелевых сплавов получать фрезерованием неэффективно вследствие низкой обрабатываемости этих материалов. Фрезерованием невозможно получить очень тонкие лопатки. При изготовлении блиска из титанового сплава диаметром 500 мм, имеющего 85 лопаток с хордой 33 мм, одна лопатка фрезеруется в течение -15 мин. Скорость резания при черновой обработке составляет -100 м/мин, а при чистовой — 300 м/мин. Такие высокие скорости резания, полученные путём оптимизации условий обработки, позволили увеличить производительность фрезерования на 50 %. Шероховатость рабочих поверхностей лопаток после фрезерования составляет Ra =1,5 мкм. После фрезерования ручные доводочные работы не выполняются. В качестве финишной обработки используется виброполирование, а для предварительного прорезания пазов - абразивная струйная резка.

Электрохимическая обработка (ЭХО) является эффективным способом серийного производства блисков средних и малых размеров. К достоинствам ЭХО можно отнести высокую стабильность, производительность, отсутствие износа электродов. При использовании ЭХО не требуется ручная доработка поверхностей. Современное технологическое оборудование позволяет эффективно автоматически контролировать параметры процесса. В то же время, возникает ряд сложностей при подготовке производства. Это касается, в первую очередь, оптимизации формы электрода, выполняемой опытным путём в несколько итераций (до настоящего времени отсутствуют эффективные методики расчёта формы электрода для таких сложных поверхностей, как лопатки). Требуется квалифицированный опытный персонал. Перед чистовой ЭХО пазы между лопатками могут быть предварительно получены фрезерованием или струйно-абразивной резкой.

В настоящее время налажено серийное производство моноколёс диаметром 650 мм, имеющих 40 лопаток с хордой 72 мм и высотой 100 мм, из титанового сплава Ti-6Al-4V. ЭХО выполняется после предварительного чернового фрезерования с припуском 2 мм при плотности тока 0,5 А/мм 2 и подаче 1 мм/мин. Шероховатость поверхности после обработки составляет Rz = 5 — 10 мкм, время обработки одной лопатки - 5 мин.

Линейная сварка трением первоначально была разработана для ремонта повреждённых лопаток, которые нельзя было ремонтировать обычной сваркой. Сегодня этот метод применяется для получения блисков с лопатками большого размера. Каждая лопатка приваривается отдельно.

Моноколёса относятся к наиболее ответственным деталям двигателя. Надёжность и себестоимость их изготовления неразрывно связана с уровнем технологии производства. Разработанный на ММПО «Салют» технологический процесс изготовления моноколёс включает следующие основные операции:

  • заготовка - непрофилированная поковка (шайба);
  • предварительная и окончательная обточка поковок выполняется на токарных станках MDW-20S ;
  • предварительная и окончательная обработка поковок при наличии внецентренных крепёжных отверстий осуществляется на токарно-фрезерных центрах INTEGREX 1060 фирмы «MAZAK» (Япония). При больших габаритах и массе используют станки с вертикальной осью вращения заготовки типа «MORISEIKI» (Япония).

  • предварительное и окончательное фрезерование межло- паточных каналов выполняется на многоцелевых станках с ЧПУ фирмы «STARRAG» (Германия);

  • окончательная обработка межлопаточных каналов (полирование, скругление кромок пера лопаток на пневмомашинах типа СМ21-3-18000 борфрезами и войлочными кругами с накатанным абразивом);
  • контроль геометрии межлопаточных каналов, выполняемый непосредственно на фрезерном станке с ЧПУ, на котором вместо обрабатывающего инструмента устанавливается контрольная измерительная головка, выдающая информацию в системе ЧПУ станка на экран дисплея или распечатку отклонений. Контроль геометрии межлопаточных каналов может выполняться также на контрольно-измерительной машине.
  • С целью автоматизации процесса подготовки управляющих программ, выбора параметров режущего инструмента для предварительного и окончательного фрезерования и оценки формообразования используются математические модели межлопаточных каналов. Фрезерование межлопаточных каналов на станках фирмы «STARRAG» выполняется с достаточной точностью и шероховатостью поверхностей под окончательную безразмерную обработку.

    Технология окончательной безразмерной обработки межлопаточных каналов отрабатывается на вибро-гидравлических машинах в среде свободного абразива, где лопатки получают требуемую шероховатость поверхностей и сохраняют заданный профиль входной и выходной кромок.

    В современных ГТД часто используются осевые компрессоры. Центробежные компрессоры встречаются значительно реже. Основной деталью центробежного компрессора является крыльчатка. По конструктивным признакам различают следующие виды крыльчаток: открытые (заборники), полузакрытые и закрытые. Полузакрытые и закрытые бывают односторонними и двухсторонними.


    Виды крыльчаток: а - открытая; б - полузакрытая; в - закрытая литая; г - закрытая паяная

    Открытая крыльчатка представляет собой ступицу с лопатками (лопастями) без торцевой стенки. Полузакрытая крыльчатка имеет ступицу и диск, к которым примыкают лопатки. Последние бывают прямыми и криволинейными трапецеидального сечения и с постепенным утолщением к ступице.

    У небольших крыльчаток лопатки могут иметь заборные части. В большинстве современных ГТД применяют полузакрытые крыльчатки.

    Закрытые крыльчатки (литые) и сборные (паяные) в авиационных газотурбинных двигателях применяются редко, что обусловлено трудностью их изготовления и недостаточной прочностью.

    Соединение компрессора с валом и передача крутящего момента от вала турбины к крыльчатке осуществляются:

    • креплением вала к крыльчатке с помощью фланцев и шпилек;
    • соединением эвольвентными шлицами;
    • креплением крыльчатки с цапфой штифтами; цапфа имеет торцевые шлицы для передачи крутящего момента.

    Точность обработки отдельных поверхностей и их взаимного расположения характеризуется следующими величинами:

    • посадочные поверхности (поверхности А) и лабиринтные пояски (Д) - 6 — 10-Й квалитеты;
    • наружный диаметр (поверхность Б) - 8 — 10-й квалитеты;
    • остальные поверхности - 11 — 12-й квалитеты;
    • биения наружного диаметра (Б) и торцов (Б, Г) относительно посадочных поверхностей (А) - 0,02 — 0,05 мм;
    • шероховатость лопаток полузакрытых и открытых крыльчаток Ra = 0,16 — 0,08 мкм.

    Большинство открытых и полузакрытых крыльчаток выполняют из алюминиевых деформируемых сплавов АК4-1, АК6-1, БД-17. Если температура крыльчаток в условиях эксплуатации выше 200 °С, то крыльчатки изготавливают из титановых сплавов ВТ-10, ВТ-25У. Для закрытых цельных крыльчаток применяют литейные алюминиевые сплавы, а для сборно-паяных - стали 30ХГСА, 12Х18Н9Т и др.

    Заготовки открытых и полузакрытых крыльчаток обычно получают в закрытых штампах. Заготовки крыльчаток из алюминиевых сплавов отливают в земляные формы, металлические кокили и оболочковые формы.

    Механическая обработка крыльчаток делится на три этапа. При черновом этапе обрабатываются все поверхности крыльчатки и снимается до 70 % всего припуска. Обработка ведётся с большими подачами и глубинами резания. На чистовом этапе снимаются оставшиеся 30 % припуска. Точность и шероховатость поверхности на этом этапе, в основном, соответствует требованиям чертежа. На окончательном этапе полируются лопатки и полки.

    Технологическими базами при обработке открытых и полузакрытых крыльчаток служат наружные поверхности Б, отверстия А и торцы В и Г.

    Основные этапы технологического процесса изготовления полузакрытой крыльчатки:

    • штамповка;
    • точение наружного контура и подрезка торца;
    • ультразвуковой контроль материала заготовки;
    • растачивание отверстия и подрезка другого торца;
    • сверление отверстий под шпильки и развёртывание двух из них;
    • черновое и чистовое точение наружного контура крыльчатки (раздельно правую и левую стороны);
    • координатно-расточная;
    • фрезерование лопаток (предварительное);
    • термообработка (стабилизация);
    • фрезерование лопаток (окончательное);
    • обработка шлицев;
    • окончательное точение наружного контура крыльчатки;
    • балансировка;
    • технический контроль.

    Обработка цилиндрических поверхностей и торцов крыльчаток выполняется на токарных станках с ЧПУ, токарно-револьверных и токарно-фрезерных многоцелевых станках.

    Более всего для изготовления турбинных моноколёс подходит 5-координатный обрабатывающий центр. Диапазон наклона поворотного стола от -60 до +150°. Фрезерование выполняется со спиральным и боковым входом инструмента.

    На ММПП «Салют», освоена и внедрена высокоточная размерная обработка межлопаточных каналов моноколёс компрессоров на швейцарских станках фирмы «Shtarrag», для чего организован специализированный участок, на котором размещены фрезерные станки с ЧПУ, оборудование для перезаточки и контроля режущего инструмента, контрольные приборы.

    Отличительной особенностью этого оборудования является:

    • одновременная обработка четырёх моноколёс;
    • автоматическое бесступенчатое регулирование подачи с помощью системы «адаптивного контроля», специально разработанной для черновой и чистовой обработки;
    • температурная стабилизация (опоры шпинделя, меж- центровое расстояние и т.п.) посредством охлаждения компрессором позволяет добиться максимальной частоты вращения шпинделя и улучшения точности обработки при многошпиндельном, многоместном длительном режиме работы.

Полезная модель относится к области двигателестроения и может быть использована в лопатках газотурбинного двигателя (ГТД) для авиационного, судового и наземного (в составе энергоустановки) применения. В полезной модели решается задача увеличение усталостной прочности по изгибу лопатки за счет уменьшения напряжений растяжения в ее замке во избежание преждевременного разрушения лопатки. Дополнительной задачей является возможность применения предлагаемого решения к охлаждаемым лопаткам ГТД. Поставленная задача решается тем, что лопатка турбины ГТД содержит елочный замок, на котором выполнен концентратор напряжения в виде отверстия. Новым в предлагаемой полезной модели является то, что отверстие расположено вдоль оси лопатки ГТД. Лопатка может содержать канал, который сообщается с отверстием, образуя единый концентратор напряжений. Такое выполнение елочного замка лопатки турбины ГТД увеличивает усталостную прочность по изгибу лопатки за счет уменьшения напряжений растяжения в ее замке, что позволяет избежать преждевременного разрушения лопатки.


Полезная модель относится к двигателестроению и может быть использована в лопатках газотурбинного двигателя (ГТД) для авиационного, судового и наземного (в составе энергоустановки) применения.

Известна конструкция лопатки турбины ГТД, содержащая елочный замок (Скубачевский Г.С. Авиационные газотурбинные двигатели. Конструкция и расчет деталей. - М.: Машиностроение, 1981,с.89, рис.3.27).

Недостатком лопатки с таким замком является то, что в ней не предусмотрено выполнение концентратора напряжений. Отсутствие концентратора ведет при внезапном снятии нагрузки к разрушению не только лопаток, но и диска.

Также известна конструкция лопатки ГТД, содержащая елочный замок и, по крайней мере, один концентратор напряжений в виде отверстия на замке, расположенного поперек оси лопатки (Патент GB 1468470 от 30.03.1977).

К недостатком такой конструкции можно отнести то, что на елочный замок при работе действуют напряжения растяжения, увеличение которых приводит к недостаточной усталостной прочности на изгиб. Результатом является преждевременное разрушение лопатки ГТД. Так же данную конструкцию нельзя использовать в охлаждаемых лопатках, так как возникает утечка охлаждающего воздуха.

Технической задачей полезной модели является увеличение усталостной прочности по изгибу лопатки за счет уменьшения напряжений растяжения в ее замке во избежание преждевременного разрушения лопатки.

Дополнительной технической задачей является возможность применения предлагаемого решения к охлаждаемым лопаткам ГТД.

Поставленная задача решается тем, что лопатка турбины ГТД содержит елочный замок, на котором выполнен концентратор напряжения в виде отверстия.

Новым в предлагаемой полезной модели является то, что отверстие расположено вдоль оси лопатки ГТД.

Кроме того, лопатка может содержать канал, который сообщается с отверстием, образуя единый концентратор напряжений.

На предлагаемом чертеже изображен продольный разрез лопатки турбины ГТД.

Лопатка ГТД включает елочный замок 1. Елочный замок 1 содержит концентратор напряжений в виде отверстия 2, выполненного вдоль оси 3 лопатки.

Лопатка турбины ГТД снабжена каналом 4 для охлаждения, который сообщен с отверстием 2.

При работе колеса турбины ГТД, в случае отказа при внезапном снятии нагрузки, частота вращения диска увеличивается под действием увеличивающихся центробежных сил. В свою очередь центробежные силы увеличивают напряжения сжатия и изгиба в елочном замке 1 и в диске (на чертеже не показан), при этом напряжения растяжения снижаются из-за наличия концентратора напряжений в виде отверстия 2, выполненном на елочном замке 1 вдоль оси лопатки. Это ведет к повышению усталостной прочности на изгиб в замке лопатки, что позволяет избежать преждевременного разрушения лопатки.

Лопатка турбины ГТД работает, как охлаждаемая лопатка, когда воздух проходит по каналу 4 для охлаждения, который сообщен с отверстием 2 для охлаждения елочного замка 1 лопатки.

Такое выполнение лопатки турбины ГТД позволяет увеличить усталостную прочность по изгибу лопатки за счет уменьшения напряжений растяжения в ее замке во избежание преждевременного разрушения лопатки, возможно применение к охлаждаемым лопаткам ГТД.


Формула полезной модели

1. Лопатка турбины газотурбинного двигателя, содержащая елочный замок, на котором выполнен, по крайней мере, один концентратор напряжения в виде отверстия отличающаяся тем, что отверстие выполнено вдоль оси лопатки.

2. Лопатка турбины газотурбинного двигателя по п.1, отличающаяся тем, что лопатка содержит, по крайней мере, один канал для охлаждения, который сообщен с отверстием.



Понравилась статья? Поделитесь ей
Наверх