Указать точки разрыва функции онлайн калькулятор. Точки разрыва функции – определения, классификация и примеры

Определение. Пусть на некотором промежутке определена функция f(x) и x 0 – точка этого промежутка. Если , то f(x) называется непрерывной в точке x 0 .
Из определения следует, что о непрерывности можно говорить лишь по отношению к тем точкам, в которых f(x) определена (при определении предела функции такого условия не ставилось). Для непрерывных функций , то есть операции f и lim перестановочны. Соответственно двум определениям предела функции в точке можно дать два определения непрерывности – «на языке последовательностей» и «на языке неравенств» (на языке ε-δ). Предлагается это сделать самостоятельно.
Для практического использования иногда более удобно определение непрерывности на языке приращений.
Величина Δx=x-x 0 называется приращением аргумента, а Δy=f(x)-f(x 0) – приращением функции при переходе из точки x 0 в точку x.
Определение. Пусть f(x) определена в точке x 0 . Функция f(x) называется непрерывной в точке x 0 , если бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции, то есть Δy→0 при Δx→0.

Пример 1. Доказать, что функция y=sinx непрерывна при любом значении x.
Решение. Пусть x 0 – произвольная точка. Придавая ей приращение Δx, получим точку x=x 0 +Δx. Тогда . Получаем .
Определение. Функция y=f(x) называется непрерывной в точке x 0 справа (слева), если
.
Функция, непрерывная во внутренней точке, будет одновременно непрерывной справа и слева. Справедливо и обратное утверждение: если функция непрерывна в точке слева и справа, то она будет непрерывной в этой точке. Однако функция может быть непрерывной только с одной стороны. Например, для , , f(1)=1, следовательно, эта функция непрерывна только слева (график этой функции см. выше в пункте 5.7.2).
Определение. Функция называется непрерывной на некотором промежутке, если она непрерывна в каждой точке этого промежутка.
В частности, если промежутком является отрезок , то на его концах подразумевается односторонняя непрерывность.

Свойства непрерывных функций

1. Все элементарные функции непрерывны в своей области определения.
2. Если f(x) и φ(x), заданные на некотором промежутке, непрерывны в точке x 0 этого промежутка, то в этой точке будут также непрерывны функции .
3. Если y=f(x) непрерывна в точке x 0 из X, а z=φ(y) непрерывна в соответствующей точке y 0 =f(x 0) из Y, то и сложная функция z=φ(f(x)) будет непрерывной в точке x 0 .

Разрывы функции и их классификация

Признаком непрерывности функции f(x) в точке x 0 служит равенство , которое подразумевает наличие трех условий:
1) f(x) определена в точке x 0 ;
2) ;
3) .
Если хотя бы одно из этих требований нарушено, то x 0 называют точкой разрыва функции. Другими словами, точкой разрыва называется точка, в которой эта функция не является непрерывной. Из определения точек разрыва следует, что точками разрыва функции являются:
а) точки, принадлежащие области определения функции, в которых f(x) теряет свойство непрерывности,
б) точки, не принадлежащие области определения f(x), которые являются смежными точками двух промежутков области определения функции.
Например, для функции точка x=0 есть точка разрыва, так как функция в этой точке не определена, а функция имеет разрыв в точке x=1, являющейся смежной для двух промежутков (-∞,1) и (1,∞) области определения f(x) и не существует.

Для точек разрыва принята следующая классификация.
1) Если в точке x 0 имеются конечные и , но f(x 0 +0)≠f(x 0 -0), то x 0 называется точкой разрыва первого рода , при этом называют скачком функции .

Пример 2. Рассмотрим функцию
Разрыв функции возможен только в точке x=2 (в остальных точках она непрерывна как всякий многочлен).
Найдем , . Так как односторонние пределы конечны, но не равны друг другу, то в точке x=2 функция имеет разрыв первого рода. Заметим, что , следовательно функция в этой точке непрерывна справа (рис. 2).
2) Точками разрыва второго рода называются точки, в которых хотя бы один из односторонних пределов равен ∞ или не существует.

Пример 3. Функция y=2 1/ x непрерывна для всех значений x, кроме x=0. Найдем односторонние пределы: , , следовательно x=0 – точка разрыва второго рода (рис. 3).
3) Точка x=x 0 называется точкой устранимого разрыва , если f(x 0 +0)=f(x 0 -0)≠f(x 0).
Разрыв «устраним» в том смысле, что достаточно изменить (доопределить или переопределить) значение функции в этой точке, положив , и функция станет непрерывной в точке x 0 .
Пример 4. Известно, что , причем этот предел не зависит от способа стремления x к нулю. Но функция в точке x=0 не определена. Если доопределим функцию, положив f(0)=1, то она окажется непрерывной в этой точке (в остальных точках она непрерывна как частное непрерывных функций sinx и x).
Пример 5. Исследовать на непрерывность функцию .
Решение. Функции y=x 3 и y=2x определены и непрерывны всюду, в том числе и в указанных промежутках. Исследуем точку стыка промежутков x=0:
, , . Получаем, что , откуда следует, что в точке x=0 функция непрерывна.
Определение. Функция, непрерывная на промежутке за исключением конечного числа точек разрыва первого рода или устранимого разрыва, называется кусочно-непрерывной на этом промежутке.

Примеры разрывных функций

Пример 1. Функция определена и непрерывна на (-∞,+∞) за исключением точки x=2. Определим тип разрыва. Поскольку и , то в точке x=2 разрыв второго рода (рис. 6).
Пример 2. Функция определена и непрерывна при всех x, кроме x=0, где знаменатель равен нулю. Найдем односторонние пределы в точке x=0:
Односторонние пределы конечны и различны, следовательно, x=0 – точка разрыва первого рода (рис. 7).
Пример 3. Установить, в каких точках и какого рода разрывы имеет функция
Эта функция определена на [-2,2]. Так как x 2 и 1/x непрерывны соответственно в промежутках [-2,0] и , то разрыв может быть только на стыке промежутков, то есть в точке x=0. Поскольку , то x=0 является точкой разрыва второго рода.

Пример 4. Можно ли устранить разрывы функций:
а) в точке x=2;
б) в точке x=2;
в) в точке x=1?
Решение. О примере а) сразу можно сказать, что разрыв f(x) в точке x=2 устранить невозможно, так как в этой точке бесконечные односторонние пределы (см. пример 1).
б) Функция g(x) хотя имеет конечные односторонние пределы в точке x=2

(,),


но они не совпадают, поэтому разрыв также устранить нельзя.
в) Функция φ(x) в точке разрыва x=1 имеет равные односторонние конечные пределы: . Следовательно, разрыв может быть устранен переопределением функции в точке x=1, если положить f(1)=1 вместо f(1)=2.

Пример 5. Показать, что функция Дирихле


разрывна в каждой точке числовой оси.
Решение. Пусть x 0 – любая точка из (-∞,+∞). В любой ее окрестности найдутся как рациональные, так и иррациональные точки. Значит, в любой окрестности x 0 функция будет иметь значения, равные 0 и 1. В таком случае не может существовать предела функции в точке x 0 ни слева, ни справа, значит функция Дирихле в каждой точке числовой оси имеет разрывы второго рода.

Пример 6. Найти точки разрыва функции


и определить их тип.
Решение. Точками, подозрительными на разрыв, являются точки x 1 =2, x 2 =5, x 3 =3.
В точке x 1 =2 f(x) имеет разрыв второго рода, так как
.
Точка x 2 =5 является точкой непрерывности, так как значение функции в этой точке и в ее окрестности определяется второй строкой, а не первой: .
Исследуем точку x 3 =3: , , откуда следует, что x=3 – точка разрыва первого рода.

Для самостоятельного решения.
Исследовать функции на непрерывность и определить тип точек разрыва:
1) ; Ответ: x=-1 – точка устранимого разрыва;
2) ; Ответ: Разрыв второго рода в точке x=8;
3) ; Ответ: Разрыв первого рода при x=1;
4)
Ответ: В точке x 1 =-5 устранимый разрыв, в x 2 =1 – разрыв второго рода и в точке x 3 =0 - разрыв первого рода.
5) Как следует выбрать число A, чтобы функция

была бы непрерывной в точке x=0?
Ответ: A=2.
6) Можно ли подобрать число A так, чтобы функция

была бы непрерывной в точке x=2?
Ответ: нет.

Определение точек разрыва функции и их видов является продолжением темы непрерывности функции . Наглядное (графическое) объяснение смысла точек разрыва функции даётся так же в контрасте с понятием непрерывности. Научимся находить точки разрыва функции и определять их виды. И помогут нам в этом наши верные друзья - левый и правый пределы, обобщённо называемые односторонними пределами. Если у кого-то есть страх перед односторонними пределами, то скоро развеем его.

Точки на графике, которые не соединены между собой, называются точками разрыва функции . График такой функции, терпящей разрыв в точке x=2 - - на рисунке ниже.

Обобщением вышесказанного является следующее определение. Если функция не является непрерывной в точке , то она имеет в этой точке разрыв а сама точка называется точкой разрыва . Разрывы бывают первого рода и второго рода .

Для того, чтобы определять виды (характер) точек разрыва функции нужно уверенно находить пределы , поэтому нелишне открыть в новом окне соответствующий урок. Но в связи с точками разрыва у нас появляется кое-что новое и важное - односторонние (левый и правый) пределы. Обобщённо они записываются (правый предел) и (левый предел). Как и в случае с пределом вообще, для того, чтобы найти предел функции, нужно в выражение функции вместо икса подставить то, к чему стремится икс. Но, возможно, спросите вы, чем же будут отличаться правый и левый пределы, если в случае правого к иксу хотя что-то и прибавляется, но это что-то - ноль, а в случае левого из икса что-то вычитается, но это что-то - тоже ноль? И будете правы. В большинстве случаев.

Но в практике поиска точек разрыва функции и определения их вида существует два типичных случая, когда правый и левый пределы не равны:

  • у функции существует два или более выражений, зависящих от участка числовой прямой, к которой принадлежит икс (эти выражения обычно записываются в фигурных скобках после f (x )= );
  • в результате подстановки того, к чему стремится икс, получается дробь, в знаменателе которой остаётся или плюс ноль (+0) или минус ноль (-0) и поэтому такая дробь означает либо плюс бесконечность, либо минус бесконечность, а это совсем разные вещи.

Точки разрыва первого рода

Точка разрыва первого рода: у функции существуют как конечный (т. е. не равный бесконечности) левый предел, так и конечный правый предел, но функция не определена в точке или левый и правый пределы различны (не равны).

Точка устранимого разрыва первого рода. Левый и правый пределы равны. При этом существует возможность доопределить функцию в точке. Доопределить функцию в точке, говоря просто, значит обеспечить соединение точек, между которыми находится точка, в которой найдены равные друг другу левый и правый пределы. При этом соединение должно представлять собой лишь одну точку, в которой должно быть найдено значение функции.

Пример 1. Определить точку разрыва функции и вид (характер) точки разрыва.

Точки разрыва второго рода

Точка разрыва второго рода: точка, в которой хотя бы один из пределов (левый или правый) - бесконечный (равен бесконечности).

Пример 3.

Решение. Из выражения степени при e видно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке:

Один из пределов равен бесконечности, поэтому точка - точка разрыва второго рода. График функции с точкой разрыва - под примером.

Нахождение точек разрыва функции может быть как самостоятельной задачей, так и частью Полного исследования функции и построения графика .

Пример 4. Определить точку разрыва функции и вид (характер) точки разрыва для функции

Решение. Из выражения степени при 2 видно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке.

Процесс исследования функции на непрерывность неразрывно связан с навыком нахождения односторонних пределов функции. Поэтому, чтобы приступить к изучению материала данной статьи, желательно предварительно разобрать тему предела функции.

Yandex.RTB R-A-339285-1 Определение 1

Функция f (x) является непрерывной в точке x 0 , если предел слева равен пределу справа и совпадает со значением функции в точке x 0 , т.е.: lim x → x 0 - 0 f (x) = lim x → x 0 + 0 f (x) = f (x 0)

Данное определение позволяет вывести следствие: значение предела функции в точках непрерывности совпадает со значением функции в этих точках.

Пример 1

Дана функция f (x) = 1 6 (x - 8) 2 - 8 . Необходимо доказать ее непрерывность в точке х 0 = 2 .

Решение

В первую очередь, определим существование предела слева. Чтобы это сделать, используем последовательность аргументов х n , сводящуюся к х 0 = 2 · (х n < 2) . Например, такой последовательностью может быть:

2 , 0 , 1 , 1 1 2 , 1 3 4 , 1 7 8 , 1 15 16 , . . . , 1 1023 1024 , . . . → 2

Соответствующая последовательность значений функций выглядит так:

f (- 2) ; f (0) ; f (1) ; f 1 1 2 ; f 1 3 4 ; f 1 7 8 ; f 1 15 16 ; . . . ; f 1 1023 1024 ; . . . = = 8 . 667 ; 2 . 667 ; 0 . 167 ; - 0 . 958 ; - 1 . 489 ; - 1 . 747 ; - 1 . 874 ; . . . ; - 1 . 998 ; . . . → - 2

на чертеже они обозначены зеленым цветом.

Достаточно очевидно, что такая последовательность сводится к - 2 , значит lim x → 2 - 0 1 6 (x - 8) 2 - 8 = - 2 .

Определим существование предела справа: используем последовательность аргументов х n , сводящуюся к х 0 = 2 (х n > 2) . Например, такой последовательностью может быть:

6 , 4 , 3 , 2 1 2 , 2 1 4 , 2 1 8 , 2 1 16 , . . . , 2 1 1024 , . . . → 2

Соответствующая последовательность функций:

f (6) ; f (4) ; f (3) ; f 2 1 2 ; f 2 1 4 ; f 2 1 8 ; f 2 1 16 ; . . . ; f 2 1 1024 ; . . . = = - 7 . 333 ; - 5 . 333 ; - 3 . 833 ; - 2 . 958 ; - 2 . 489 ; - 2 . 247 ; - 2 . 247 ; - 2 . 124 ; . . . ; - 2 . 001 ; . . . → - 2

на рисунке обозначена синим цветом.

И эта последовательность сводится к - 2 , тогда lim x → 2 + 0 1 6 (x - 8) 2 - 8 = - 2 .

Действиями выше было показано, что пределы справа и слева являются равными, а значит существует предел функции f (x) = 1 6 x - 8 2 - 8 в точке х 0 = 2 , при этом lim x → 2 1 6 (x - 8) 2 - 8 = - 2 .

После вычисления значения функции в заданной точке очевидно выполнение равенства:

lim x → 2 - 0 f (x) = lim x → 2 + 0 f (x) = f (2) = 1 6 (2 - 8) 2 - 8 = - 2 что свидетельствует о непрерывности заданной функции в заданной точке.

Покажем графически:

Ответ: Непрерывность функции f (x) = 1 6 (x - 8) 2 - 8 в заданной части доказано.

Устранимый разрыв первого рода

Определение 2

Функция имеет устранимый разрыв первого рода в точке х 0 , когда пределы справа и слева равны, но не равны значению функции в точке, т.е.:

lim x → x 0 - 0 f (x) = lim x → x 0 + 0 f (x) ≠ f (x 0)

Пример 2

Задана функция f (x) = x 2 - 25 x - 5 . Необходимо определить точки ее разрыва и определить их тип.

Решение

Сначала обозначим область определения функции: D (f (x)) ⇔ D x 2 - 25 x - 5 ⇔ x - 5 ≠ 0 ⇔ x ∈ (- ∞ ; 5) ∪ (5 ; + ∞)

В заданной функции точкой разрыва может служить только граничная точка области определения, т.е. х 0 = 5 . Исследуем функцию на непрерывность в этой точке.

Выражение x 2 - 25 x - 5 упростим: x 2 - 25 x - 5 = (x - 5) (x + 5) x - 5 = x + 5 .

Определим пределы справа и слева. Поскольку функция g (x) = x + 5 является непрерывной при любом действительном x , тогда:

lim x → 5 - 0 (x + 5) = 5 + 5 = 10 lim x → 5 + 0 (x + 5) = 5 + 5 = 10

Ответ: пределы справа и слева являются равными, а заданная функция в точке х 0 = 5 не определена, т.е. в этой точке функция имеет устранимый разрыв первого рода.

Неустранимый разрыв первого рода также определяется точкой скачка функции.

Определение 3 Пример 3

Задана кусочно-непрерывная функция f (x) = x + 4 , x < - 1 , x 2 + 2 , - 1 ≤ x < 1 2 x , x ≥ 1 . Необходимо изучить заданную функцию на предмет непрерывности, обозначить вид точек разрыва, составить чертеж.

Решение

Разрывы данной функции могут быть лишь в точке х 0 = - 1 или в точке х 0 = 1 .

Определим пределы справа и слева от этих точек и значение заданной функции в этих точках:

  • слева от точки х 0 = - 1 заданная функция есть f (x) = x + 4 , тогда в силу непрерывности линейной функции: lim x → - 1 - 0 f (x) = lim x → - 1 - 0 (x + 4) = - 1 + 4 = 3 ;
  • непосредственно в точке х 0 = - 1 функция принимает вид: f (x) = x 2 + 2 , тогда: f (- 1) = (- 1) 2 + 2 = 3 ;
  • на промежутке (- 1 ; 1) заданная функция есть: f (x) = x 2 + 2 . Опираясь на свойство непрерывности квадратичной функции, имеем: lim x → - 1 + 0 f (x) = lim x → - 1 + 0 (x 2 + 2) = (- 1) 2 + 2 = 3 lim x → 1 - 0 f (x) = lim x → 1 - 0 (x 2 + 2) = (1) 2 + 2 = 3
  • в точке х 0 = - 1 функция имеет вид: f (x) = 2 x и f (1) = 2 · 1 = 2 .
  • справа от точки х 0 заданная функция есть f (x) = 2 x . В силу непрерывности линейной функции: lim x → 1 + 0 f (x) = lim x → 1 + 0 (2 x) = 2 · 1 = 2

Ответ: в конечном счете мы получили:

  • lim x → - 1 - 0 f (x) = lim x → - 1 + 0 f (x) = f (- 1) = 3 - это означает, что в точке х 0 = - 1 заданная кусочная функция непрерывна;
  • lim x → - 1 - 0 f (x) = 3 , lim x → 1 + 0 f (x) = 2 - таким образом, в точке х 0 = 1 определён неустранимый разрыв первого рода (скачок).

Нам остается только подготовить чертеж данного задания.

Определение 4

Функция имеет разрыв второго рода в точке х 0 , когда какой-либо из пределов слева lim x → x 0 - 0 f (x) или справа lim x → x 0 + 0 f (x) не существует или бесконечен.

Пример 4

Задана функция f (x) = 1 x . Необходимо исследовать заданную функцию на непрерывность, определить вид точек разрыва, подготовить чертеж.

Решение

Запишем область определения функции: x ∈ (- ∞ ; 0) ∪ (0 ; + ∞) .

Найдем пределы справа и слева от точки х 0 = 0 .

Зададим произвольную последовательность значений аргумента, сходящуюся к х 0 слева. К примеру:

8 ; - 4 ; - 2 ; - 1 ; - 1 2 ; - 1 4 ; . . . ; - 1 1024 ; . . .

Ей соответствует последовательность значений функции:

f (- 8) ; f (- 4) ; f (- 2) ; f (- 1) ; f - 1 2 ; f - 1 4 ; . . . ; f - 1 1024 ; . . . = = - 1 8 ; - 1 4 ; - 1 2 ; - 1 ; - 2 ; - 4 ; . . . ; - 1024 ; . . .

Очевидно, что эта последовательность является бесконечно большой отрицательной, тогда lim x → 0 - 0 f (x) = lim x → 0 - 0 1 x = - ∞ .

Тепереь зададим произвольную последовательность значений аргумента, сходящуюся к х 0 справа. К примеру: 8 ; 4 ; 2 ; 1 ; 1 2 ; 1 4 ; . . . ; 1 1024 ; . . . , и ей соответствует последовательность значений функции:

f (8) ; f (4) ; f (2) ; f (1) ; f 1 2 ; f 1 4 ; . . . ; f 1 1024 ; . . . = = 1 8 ; 1 4 ; 1 2 ; 1 ; 2 ; 4 ; . . . ; 1024 ; . . .

Эта последовательность - бесконечно большая положительная, а значит lim x → 0 + 0 f (x) = lim x → 0 + 0 1 x = + ∞ .

Ответ : точка х 0 = 0 - точка разрыва функции второго рода.

Проиллюстрируем:

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Определение точки разрыва функции
Конечная точка x 0 называется точкой разрыва функции f(x) , если функция определена на некоторой проколотой окрестности точки x 0 , но не является непрерывной в этой точке.

То есть, в точке разрыва, функция либо не определена, либо определена, но хотя бы один односторонний предел в этой точке или не существует, или не равен значению f(x 0 ) функции в точке x 0 . См. «Определение непрерывности функции в точке ».

Определение точки разрыва 1-го рода
Точка называется точкой разрыва первого рода , если является точкой разрыва и существуют конечные односторонние пределы слева и справа :
.

Определение скачка функции
Скачком Δ функции в точке называется разность пределов справа и слева
.

Определение точки устранимого разрыва
Точка называется точкой устранимого разрыва , если существует предел
,
но функция в точке или не определена, или не равна предельному значению: .

Таким образом, точка устранимого разрыва - это точка разрыва первого рода, в которой скачек функции равен нулю.

Определение точки разрыва 2-го рода
Точка разрыва называется точкой разрыва второго рода , если она не является точкой разрыва 1-го рода. То есть если не существует, хотя бы одного одностороннего предела, или хотя бы один односторонний предел в точке равен бесконечности.

Исследование функций на непрерывность

При исследовании функций на непрерывность мы используем следующие факты.

  • Элементарные функции и обратные к ним непрерывны на своей области определения. К ним относятся следующие функции:
    , а также постоянная и обратные к ним функции. См. «Справочник по элементарным функциям ».
  • Сумма, разность и произведение непрерывных, на некотором множестве функций, является непрерывной, функцией на этом множестве.
    Частное двух непрерывных, на некотором множестве функций, является непрерывной, функцией на этом множестве, за исключением точек, в которых знаменатель дроби обращается в нуль. См. «Арифметические свойства непрерывных функций »
  • Сложная функция непрерывна в точке , если функция непрерывна в точке , а функция непрерывна в точке . См. «Предел и непрерывность сложной функции »

Примеры

Пример 1

Задана функция и два значения аргумента и . Требуется: 1) установить, является ли данная функция непрерывной или разрывной для каждого из данных значений аргумента; 2) в случае разрыва функции найти ее пределы в точке разрыва слева и справа, установить вид разрыва; 3) сделать схематический чертеж.
.

Заданная функция является сложной. Ее можно рассматривать как композицию двух функций:
, . Тогда
.

Рассмотрим функцию . Она составлена из функции и постоянных с помощью арифметических операций сложения и деления. Функция является элементарной - степенной функцией с показателем степени 1 . Она определена и непрерывна для всех значений переменной . Поэтому функция определена и непрерывна для всех , кроме точек, в которых знаменатель дроби обращается в нуль. Приравниваем знаменатель к нулю и решаем уравнение:
.
Получаем единственный корень .
Итак, функция определена и непрерывна для всех , кроме точки .

Рассмотрим функцию . Это показательная функция с положительным основанием степени. Она определена и непрерывна для всех значений переменной .
Поэтому заданная функция определена и непрерывна для всех значений переменной , кроме точки .

Таким образом, в точке , заданная функция является непрерывной.

График функции y = 4 1/(x+2) .

Рассмотрим точку . В этой точке функция не определена. Поэтому она не является непрерывной. Установим род разрыва. Для этого находим односторонние пределы.

Используя связь между бесконечно большими и бесконечно малыми функциями , для предела слева имеем:
при ,
,
,
.

Здесь мы использовали следующие общепринятые обозначения:
.
Также мы использовали свойство показательной функции с основанием :
.

Аналогично, для предела справа имеем:
при ,
,
,
.

Поскольку один из односторонних пределов равен бесконечности, то в точке разрыв второго рода.

В точке функция непрерывна.
В точке разрыв второго рода,
.

Пример 2

Задана функция . Найти точки разрыва функции, если они существуют. Указать род разрыва и скачек функции, если есть. Сделать чертеж.
.

График заданной функции.

Функция является степенной функцией с целым показателем степени, равным 1 . Такую функцию также называют линейной. Она определена и непрерывна для всех значений переменной .

В входят еще две функции: и . Они составлены из функции и постоянных с помощью арифметических операций сложения и умножения:
, .
Поэтому они также непрерывны для всех .

Поскольку функции, входящие в состав непрерывны для всех , то может иметь точки разрыва только в точках склейки ее составляющих. Это точки и . Исследуем на непрерывность в этих точках. Для этого найдем односторонние пределы.

Рассмотрим точку . Чтобы найти левый предел функции в этой точке, мы должны использовать значения этой функции в любой левой проколотой окрестности точки . Возьмем окрестность . На ней . Тогда предел слева:
.
Здесь мы использовали тот факт, что функция является непрерывной в точке (как и в любой другой точке). Поэтому ее левый (как и правый) предел равен значению функции в этой точке.

Найдем правый предел в точке . Для этого мы должны использовать значения функции в любой правой проколотой окрестности этой точки. Возьмем окрестность . На ней . Тогда предел справа:
.
Здесь мы также воспользовались непрерывностью функции .

Поскольку, в точке , предел слева не равен пределу справа, то в ней функция не является непрерывной - это точка разрыва. Поскольку односторонние пределы конечны, то это точка разрыва первого рода. Скачек функции:
.

Теперь рассмотрим точку . Тем же способом вычисляем односторонние пределы:
;
.
Поскольку функция определена в точке и левый предел равен правому, то функция непрерывна в этой точке.

Функция имеет разрыв первого рода в точке . Скачек функции в ней: . В остальных точках функция непрерывна.

Пример 3

Определить точки разрыва функции и исследовать характер этих точек, если
.

Воспользуемся тем, что линейная функция определена и непрерывна для всех . Заданная функция составлена из линейной функции и постоянных с помощью арифметических операций сложения, вычитания, умножения и деления:
.
Поэтому она определена и непрерывна для всех , за исключением точек, в которых знаменатель дроби обращается в нуль.

Найдем эти точки. Приравниваем знаменатель к нулю и решаем квадратное уравнение :
;
;
; .
Тогда
.

Используем формулу:
.
С ее помощью, разложим числитель на множители:
.

Тогда заданная функция примет вид:
(П1) .
Она определена и непрерывна для всех , кроме точек и . Поэтому точки и являются точками разрыва функции.

Разделим числитель и знаменатель дроби в (П1) на :
(П2) .
Такую операцию мы можем проделать, если . Таким образом,
при .
То есть функции и отличаются только в одной точке: определена при , а в этой точке не определена.

Чтобы определить род точек разрыва, нам нужно найти односторонние пределы функции в точках и . Для их вычисления мы воспользуемся тем, что если значения функции изменить, или сделать неопределенными в конечном числе точек, то это не окажет ни какого влияние на величину или существование предела в произвольной точке (см. «Влияние значений функции в конечном числе точек на величину предела »). То есть пределы функции в любых точках равны пределам функции .

Рассмотрим точку . Знаменатель дроби в функции , при в нуль не обращается. Поэтому она определена и непрерывна при . Отсюда следует, что существует предел при и он равен значению функции в этой точке:
.
Поэтому точка является точкой устранимого разрыва первого рода.

Рассмотрим точку . Используя связь бесконечно малых и бесконечно больших функций , имеем:
;
.
Поскольку пределы бесконечные, то в этой точке разрыв второго рода.

Функция имеет точку устранимого разрыва первого рода при , и точку разрыва второго рода при .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.

Подборка онлайн калькуляторов для полного исследования функции и построение графика.

Найти Область определения функции

Вычислить Четность функции

Вычисление точек пересечения графика с осью (нули функции)

Найти экстремумы функции

Точки перегиба, интервалы выпуклости и вогнутости

Построить график функции

Данный калькулятор предназначен для нахождения точек разрыва функции онлайн.

Точки разрыва функции – это точки, в которых функция имеет разрыв, при этом функция в этих точках не является непрерывной.

Существует определенная классификация точек разрыва функции. Точки разрыва функции делятся на точки разрыва первого рода и точки разрыва второго рода.

Точки разрыва первого рода при x=a имеют место быть, если существуют левосторонний и правосторонний пределы: lim(x→a-0)⁡f(x) и lim(x→a+0)⁡f(x). Эти пределы должны быть конечны. Если хотя бы один из односторонних пределов равен нулю или бесконечности, то в таком случае функция имеет точки разрыва второго рода.

Для того чтобы найти точки разрыва функции онлайн, необходимо указать функцию и значение аргумента.

Для получения полного хода решения нажимаем в ответе Step-by-step.

Исследовать функцию, построить график

План исследования функций и построения графика .

Ответ означает следующее: even - функция четная, odd - функция нечетная, neither even nor odd - функция ни четная ни нечетная.

3. Точки пересечения графика функции с осями координат;

4. Непрерывность функции, точки разрыва;

5. Асимптоты графика функции;

6. Интервалы монотоности и критические точки;

7 . Интервалы выпуклости и точки перегиба;

8. Посторение графика на основании проведённого исследования.

Образовательные онлайн сервисы: теория и практика

Решения типовых задач - Математический анализ

Исследовать функцию на непрерывность, определить характер разрыва.

Пример 1 .

Функция не определена в точках, уже нарушено первое условие непрерывности, следовательно, в этих точках функция испытывает разрыв.

Для выяснения характера разрыва нужно вычислить односторонние пределы в точках.

Так как левый предел в точке равен бесконечности, то в ней разрыв II рода.

Так как правый предел в точке равен бесконечности, то в ней разрыв II рода.

Пример 2 Функция определена на всей числовой прямой, но при этом она не является непрерывной, так как, т.е. правый и левый пределы в нуле не равны между собой и не равны значению функции в нуле, нарушены 2 и 3 условия непрерывности. Так как правый и левый пределы в нуле существуют и конечны, то это разрыв I рода.

Пример 3 Функция неопределена в нуле, следовательно, – точка разрыва.

Так как и, то это устранимый разрыв, функцию можно в нуле доопределить “по непрерывности”, положив равной единице.

Пример 4

Функция является элементарной, поэтому она непрерывна в области её определения. В область определения не входят точки, следовательно, они являются точками разрыва данной функции.

Определим тип точек разрыва.

Так как, то точка является точкой

разрыва второго рода функции.

Односторонние пределы функции в точке равны, но функция при не определена, следовательно, является устранимой точкой разрыва первого рода.

Так как заданная функция является четной функцией, то, очевидно, что

И является точкой разрыва второго рода функции.

Для построения эскиза графика функции исследуем поведение функции при

и. Так как функция четная, то

Построим эскиз графика функции.

Предлагаем наиболее хорошие на наш взгляд учебники для самостоятельного изучения математики и экономики

Компактные справочные материалы, формулы по различным разделам высшей математики и экономической статистики.

Некоторые задачи можно решить онлайн, введя числовые значения, с подробным решением.

Построим (исследуем) график функции y=f(x), для этого задайте функцию f(x)

Важно : a должно быть меньше b , иначе график не сможет построиться. Cледите за масштабом - если графика на рисунке нету, значит стоит поварьировать значения a и b

С применением степени

(квадрат и куб) и дроби

С применением синуса и косинуса

Гиберболические синус и косинус

Гиберболические тангенс и котангенс

Гиберболические арксинус и арккосинус

Гиберболические арктангенс и арккотангенс

Для периодических функций идет исследование графика функции только на промежутке периода

Наш калькулятор позволяет исследовать график функции. Но пока что нет возможности находить область определения функции

Что умеет находить этот калькулятор:

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x) Абсолютное значение x

(модуль x или |x| ) arccos(x) Функция - арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция - арктангенс от x arctgh(x) Арктангенс гиперболический от x e e число, которое примерно равно 2.7 exp(x) Функция - экспонента от x (что и e ^x ) log(x) or ln(x) Натуральный логарифм от x

(Чтобы получить log7(x) , надо ввести log(x)/log(7) (или, например для log10(x) =log(x)/log(10)) pi Число - "Пи", которое примерно равно 3.14 sin(x) Функция - Синус от x cos(x) Функция - Косинус от x sinh(x) Функция - Синус гиперболический от x cosh(x) Функция - Косинус гиперболический от x sqrt(x) Функция - квадратный корень из x sqr(x) или x^2 Функция - Квадрат x tg(x) Функция - Тангенс от x tgh(x) Функция - Тангенс гиперболический от x cbrt(x) Функция - кубический корень из x floor(x) Функция - округление x в меньшую сторону (пример floor(4.5)==4.0) sign(x) Функция - Знак x erf(x) Функция ошибок (Лапласа или интеграл вероятности)

В выражениях можно применять следующие операции:

Действительные числа вводить в виде 7.5 , не 7,5 2*x - умножение 3/x - деление x^3 - возведение в степень x + 7 - сложение x - 6 - вычитание

Контрольная работа РУ - калькуляторы онлайн



Понравилась статья? Поделитесь ей
Наверх