Виды многогранников и их названия. Почему правильные многогранники получили такие названия. Список правильных многогранников

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Правильным многогранником называется выпуклый многогранник, грани которого - равные правильные многоугольники, а двугранные углы при всех вершинах равны между собой. Доказано, что в каждой из вершин правильного многогранника сходится одно и то же число граней и одно и то же число ребер.

Всего в природе существует пять правильных многогранников. По сравнению с количеством правильных многоугольников это - очень мало: для каждого целого n>2 существует один правильный n-угольник, т.е. правильных многоугольников - бесконечно много. Правильные многогранники имеют названия по числу граней: тетраэдр (4 грани): гексаэдр (6 граней), октаэдр (8граней), додекаэдр (12 граней) и икосаэдр (20 граней). По-гречески "хедрон" означает грань, "тетра", "гекса" и т. д. - указанные числа граней. Нетрудно догадаться, что гексаэдр есть не что иное, как всем знакомый куб. Грани тетраэдра, октаэдра и икосаэдра - правильные треугольники, куба - квадраты, додекаэдра - правильные пятиугольники.

Многогранник называется выпуклым , если он весь лежит по одну сторону от плоскости любой его грани; тогда грани его тоже выпуклы. Выпуклый многогранник разрезает пространство на две части -- внешнюю и внутреннюю. Внутренняя его часть есть выпуклое тело. Обратно, если поверхность выпуклого тела многогранная, то соответствующий многогранник -- выпуклый.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. «Правильных многогранников вызывающе мало», - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук.

Каково же это вызывающе малое количество и почему их именно столько. А сколько? Оказывается, ровно пять - ни больше, ни меньше. Подтвердить это можно с помощью развертки выпуклого многогранного угла. В самом деле, для того чтобы получить какой-нибудь правильный многогранник согласно его определению, в каждой вершине должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником. Сумма плоских углов многогранного угла должна быть меньше 360, иначе никакой многогранной поверхности не получится. Перебирая возможные целые решения неравенств: 60к < 360, 90к < 360 и 108к < 360, можно доказать, что правильных многогранников ровно пять (к - число плоских углов, сходящихся в одной вершине многогранника).

Названия правильных многогранников пришли из Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник", "двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я книга "Начал" Евклида. Их еще называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Итак, было выяснено, что правильных многогранников ровно пять. А как определить в них количество ребер, граней, вершин? Это нетрудно сделать для многогранников с небольшим числом ребер, а как, например, получить такие сведения для икосаэдра? Знаменитый математик Л. Эйлер получил формулу В+Г-Р=2, которая связывает число вершин /В/, граней /Г/ и ребер /Р/ любого многогранника. Простота этой формулы заключается в том, что она не связана ни с расстоянием, ни с углами. Для того чтобы определить число ребер, вершин и граней правильного многогранника, найдем сначала число к=2у - ху+2х, где х - число ребер, принадлежащих одной грани, у - число граней, сходящихся в одной вершине.

Итак, правильные многогранники открыли нам попытки ученых приблизиться к тайне мировой гармонии и показали неотразимую привлекательность геометрии.

Список правильных многогранников

Существует всего пять правильных многогранников:

Изображение

Тип правильного многогранника

Число сторон у грани

Число рёбер, примыкающих к вершине

Общее число вершин

Общее число рёбер

Общее число граней

Тетраэдр

Додекаэдр

Икосаэдр

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Впрочем, многогранники - отнюдь не только объект научных исследований. Их формы - завершенные и причудливые, широко используются в декоративном искусстве. Обычно модели многогранников конструируют из разверток. Но есть и другой способ.

Математики давно уже доказали возможность построения трехмерных объектов из ленты. На рис. 1 показано, как получить тетраэдр, перегибая бумажную ленту по сторонам расчерченных на ней равносторонних треугольников.

Рис. 1

Аналогичным способом можно свернуть куб (рис. 2). Его грани также выстраиваются в цепочку, а чтобы изменить направление ленты для завершения формообразования, достаточно перегнуть ее по диагонали квадрата.

Рис. 2

Так, ничем на первый взгляд не примечательная бумажная лента при нанесении на ее поверхность узора превращается в заготовку для построения самых разнообразных многогранников. На основе различных узоров можно создать все правильные многогранники, кроме додекаэдра. Это объясняется отсутствием у плоских узоров осей симметрии 5-го, 7-го и высших порядков - иначе говоря, сплошной узор из пятиугольников построить невозможно.

Рис.3

Построение октаэдра и икосаэдра осуществляется на основе узора из правильных треугольников (рис. 3 и рис. 4). Свернув для октаэдра кольцо из шести, а для икосаэдра - из десяти треугольников, перегибаем ленту в обратную сторону и продолжаем сворачивать такие же кольца.

Рис.4

Узоры наших лент - это частный случай сетей симметрии Шубникова - Лавеса (см. рис. 5). Треугольные ячейки получаются наложением двух пар зеркальных гексагональных решеток, развернутых друг относительно друга на 90°, а квадратные - совмещением квадратных решеток под углом 45° друг к другу. С этих позиций процесс образования многогранников из фокуса превращается в теоретически обоснованное и закономерное явление.

Рис. 5

В самом деле, когда сворачивается кольцо будущего многогранника, то в буквальном смысле производится перенос элементарной ячейки решетки на определенный шаг, то есть осуществляется переносная симметрия. Меняя направление формообразования за счет перегиба ленты в обратную сторону, производим мысленный поворот ячейки вокруг узла решетки, то есть проявляется уже симметрия поворотная. Стало быть, заготовка из ленты обеспечивает поворотно-переносную симметрию. Такая поворотно-переносная симметрия в наших построениях может осуществляться с углами поворотов; 30° 45°, 60°, 90°, 120°, 150°, 180°. В этом и состоит весь секрет способа образования из плоской ленты объемных тел.

Таким образом, ясно, что могут существовать только два типа лент с углами разбивки, кратными 30° и 45°. Из них получается четыре правильных многогранника: куб, октаэдр, тетраэдр, икосаэдр - и целое семейство однородных многогранников (см. рис. 6). В прекрасном сочинении Иоганна Кеплера "О шестиугольных снежинках" есть очень меткое замечание: "Среди правильных тел первым по праву считается куб, первозданная фигура, отец всех остальных тел, Октаэдр, имеющий столько же вершин, сколько у куба граней, является как бы его супругой..." Действительно, все элементы образующихся из нашей ленты сложных форм являются элементами куба или октаэдра, либо того и другого вместе.

Рис.6

многогранник тетраэдр куб октаэдр додекаэдр икосаэдр

Построение простых многогранников не представляет особых затруднений. Но чтобы сложить из ленты сложные звездчатые формы, понадобятся специальные приспособления для удержания еще не соединенных между собой колец - скрепки, зажимы и тому подобное. Создание оригинальных по своей форме многогранников чрезвычайно занимательно самим процессом формообразования.

Размещено на Allbest.ru

Подобные документы

    Пространственная симметрия правильного многогранника. Тетраэдр, октаэдр, икосаэдр, куб, додекаэдр. Геометрические свойства: площадь, объем. Роль Теэтета Афинского в развитии геометрии. Структура Солнечной системы и отношения расстояний между планетами.

    презентация , добавлен 04.05.2013

    Изучение однородных выпуклых и однородных невыпуклых многогранников. Определение правильных многогранников. Двойственность куба и октаэдра. Теорема Эйлера. Тела Архимеда. Получение тел Кеплера-Пуансо. Многогранники в геологии, ювелирном деле, архитектуре.

    презентация , добавлен 27.10.2013

    Понятие многогранника и его элементы с точки зрения топологии. Определение площади и боковой поверхности призмы, параллелепипеда, пирамиды. Понятие правильных, полуправильных, звездчатых многогранников. Многогранники в разных областях культуры и науки.

    курсовая работа , добавлен 02.04.2012

    Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.

    методичка , добавлен 30.04.2012

    Первые упоминания о правильных многогранниках. Классификация многогранников, их виды, свойства, теоремы о развертках выпуклых многогранников (Коши и Александрова). Создание моделей правильных многогранников с помощью разверток и методами оригами.

    курсовая работа , добавлен 18.01.2011

    Понятие правильного многогранника. Полное математическое описание правильных многогранников Евклида. Открытие двух законов орбитальной динамики. Основные характеристики икосаэдра. Отношение количества вершин правильного многогранника к количеству рёбер.

    презентация , добавлен 19.02.2017

    Различные виды правильных и полуправильных многогранников, их основные свойства. Многогранные поверхности, многогранники, топологические, простейшие и правильные многогранники. Грани, ребра и вершины поверхности многогранника. Пирамиды и призмы.

    курсовая работа , добавлен 21.08.2013

    Определение правильного многогранника, его сторон, вершин, отрезков, соединяющих вершины. Анализ особенностей, геометрических свойств и видов правильных многогранников. Правильные многогранники, которые встречаются в живой природе и архитектуре.

    презентация , добавлен 13.11.2015

    Исторические сведения, понятия о многогранниках. Изгибаемые многогранники Коннелли. Гипотеза кузнечных мехов. Построение модели Октаэдр Брикара, Флексор Штеффена. Симметрия, объем, изгибаемость и основные свойства многогранников. Теорема Сабитова.

    курсовая работа , добавлен 03.10.2010

    Определение многогранника, его сторон и вершин, отрезков, соединяющих вершины. Описание основания, боковых граней и высоты призмы. Правильная и усеченная пирамида. Теорема Эйлера. Анализ особенностей и геометрических свойств правильных многогранников.

Многогранники не только занимают видное место в геометрии, но и встречаются в повседневной жизни каждого человека. Не говоря уже об искусственно созданных предметах обихода в виде различных многоугольников, начиная со спичечного коробка и заканчивая архитектурными элементами, в природе также встречаются кристаллы в форме куба (соль), призмы (хрусталь), пирамиды (шеелит), октаэдра (алмаз) и т. д.

Понятие многогранника, виды многогранников в геометрии

Геометрия как наука содержит раздел стереометрию, изучающую характеристики и свойства объёмных тела, стороны которых в трёхмерном пространстве образованы ограниченными плоскостями (гранями), носят название "многогранники". Виды многогранников насчитывают не один десяток представителей, отличающихся количеством и формой граней.

Тем не менее у всех многогранников есть общие свойства:

  1. Все они имеют 3 неотъемлемых компонента: грань (поверхность многоугольника), вершина (углы, образовавшиеся в местах соединения граней), ребро (сторона фигуры или отрезок, образованный в месте стыка двух граней).
  2. Каждое ребро многоугольника соединяет две, и только две грани, которые по отношению друг к другу являются смежными.
  3. Выпуклость означает, что тело полностью расположено только по одну сторону плоскости, на которой лежит одна из граней. Правило применимо ко всем граням многогранника. Такие геометрические фигуры в стереометрии называют термином выпуклые многогранники. Исключение составляют звёздчатые многогранники, которые являются производными правильных многогранных геометрических тел.

Многогранники можно условно разделить на:

  1. Виды выпуклых многогранников, состоящих из следующих классов: обычные или классические (призма, пирамида, параллелепипед), правильные (также называемые Платоновыми телами), полуправильные (второе название - Архимедовы тела).
  2. Невыпуклые многогранники (звёздчатые).

Призма и её свойства

Стереометрия как раздел геометрии изучает свойства трёхмерных фигур, виды многогранников (призма в их числе). Призмой называют геометрическое тело, которое имеет обязательно две совершенно одинаковые грани (их также называют основаниями), лежащие в параллельных плоскостях, и n-ое число боковых граней в виде параллелограммов. В свою очередь, призма имеет также несколько разновидностей, в числе которых такие виды многогранников, как:

  1. Параллелепипед - образуется, если в основании лежит параллелограмм - многоугольник с 2 парами равных противоположных углов и двумя парами конгруэнтных противоположных сторон.
  2. имеет перпендикулярные к основанию рёбра.
  3. характеризуется наличием непрямых углов (отличных от 90) между гранями и основанием.
  4. Правильная призма характеризуется основаниями в виде с равными боковыми гранями.

Основные свойства призмы:

  • Конгруэнтные основания.
  • Все рёбра призмы равны и параллельны по отношению друг к другу.
  • Все боковые грани имеют форму параллелограмма.

Пирамида

Пирамидой называют геометрическое тело, которое состоит из одного основания и из n-го числа треугольных граней, соединяющихся в одной точке - вершине. Следует отметить, что если боковые грани пирамиды представлены обязательно треугольниками, то в основании может быть как треугольный многоугольник, так и четырёхугольник, и пятиугольник, и так до бесконечности. При этом название пирамиды будет соответствовать многоугольнику в основании. Например, если в основании пирамиды лежит треугольник - это , четырёхугольник - четырёхугольная, и т. д.

Пирамиды - это конусоподобные многогранники. Виды многогранников этой группы, кроме вышеперечисленных, включают также следующих представителей:

  1. имеет в основании правильный многоугольник, и высота ее проектируется в центр окружности, вписанной в основание или описанной вокруг него.
  2. Прямоугольная пирамида образуется тогда, когда одно из боковых рёбер пересекается с основанием под прямым углом. В таком случае это ребро справедливо также назвать высотой пирамиды.

Свойства пирамиды:

  • В случае если все боковые рёбра пирамиды конгруэнтны (одинаковой высоты), то все они пересекаются с основанием под одним углом, а вокруг основания можно прочертить окружность с центром, совпадающим с проекцией вершины пирамиды.
  • Если в основании пирамиды лежит правильный многоугольник, то все боковые рёбра конгруэнтны, а грани являются равнобедренными треугольниками.

Правильный многогранник: виды и свойства многогранников

В стереометрии особое место занимают геометрические тела с абсолютно равными между собой гранями, в вершинах которых соединяется одинаковое количество рёбер. Эти тела получили название Платоновы тела, или правильные многогранники. Виды многогранников с такими свойствами насчитывают всего пять фигур:

  1. Тетраэдр.
  2. Гексаэдр.
  3. Октаэдр.
  4. Додекаэдр.
  5. Икосаэдр.

Своим названием правильные многогранники обязаны древнегреческому философу Платону, описавшему эти геометрические тела в своих трудах и связавшему их с природными стихиями: земли, воды, огня, воздуха. Пятой фигуре присуждали сходство со строением Вселенной. По его мнению, атомы природных стихий по форме напоминают виды правильных многогранников. Благодаря своему самому захватывающему свойству - симметричности, эти геометрические тела представляли большой интерес не только для древних математиков и философов, но и для архитекторов, художников и скульпторов всех времён. Наличие всего лишь 5 видов многогранников с абсолютной симметрией считалось фундаментальной находкой, им даже присуждали связь с божественным началом.

Гексаэдр и его свойства

В форме шестигранника преемники Платона предполагали сходство со строением атомов земли. Конечно же, в настоящее время эта гипотеза полностью опровергнута, что, однако, не мешает фигурам и в современности привлекать умы известных деятелей своей эстетичностью.

В геометрии гексаэдр, он же куб, считается частным случаем параллелепипеда, который, в свою очередь, является разновидностью призмы. Соответственно и свойства куба связаны со с той лишь разницей, что все грани и углы куба равны между собой. Из этого вытекают следующие свойства:

  1. Все рёбра куба конгруэнтны и лежат в параллельных плоскостях по отношению друг к другу.
  2. Все грани - конгруэнтные квадраты (всего в кубе их 6), любой из которых может быть принят за основание.
  3. Все межгранные углы равны 90.
  4. Из каждой вершины исходит равное количество рёбер, а именно 3.
  5. Куб имеет 9 которые все пересекаются в точке пересечения диагоналей гексаэдра, именуемой центром симметрии.

Тетраэдр

Тетраэдр - это четырёхгранник с равными гранями в форме треугольников, каждая из вершин которых является точкой соединения трёх граней.

Свойства правильного тетраэдра:

  1. Все грани тетраэда - это из чего следует, что все грани четырёхгранника конгруэнтны.
  2. Так как основание представлено правильной геометрической фигурой, то есть имеет равные стороны, то и грани тетраэдра сходятся под одинаковым углом, то есть все углы равны.
  3. Сумма плоских углов при каждой из вершин равняется 180, так как все углы равны, то любой угол правильного четырёхгранника составляет 60.
  4. Каждая из вершин проецируется в точку пересечения высот противоположной (ортоцентр) грани.

Октаэдр и его свойства

Описывая виды правильных многогранников, нельзя не отметить такой объект, как октаэдр, который визуально можно представить в виде двух склеенных основаниями четырёхугольных правильных пирамид.

Свойства октаэдра:

  1. Само название геометрического тела подсказывает количество его граней. Восьмигранник состоит из 8 конгруэнтных равносторонних треугольников, в каждой из вершин которого сходится равное количество граней, а именно 4.
  2. Так как все грани октаэдра равны, равны и его межгранные углы, каждый из которых равняется 60, а сумма плоских углов любой из вершин составляет, таким образом, 240.

Додекаэдр

Если представить, что все грани геометрического тела представляют собой правильный пятиугольник, то получится додекаэдр - фигура из 12 многоугольников.

Свойства додекаэдра:

  1. В каждой вершине пересекаются по три грани.
  2. Все грани равны и имеют одинаковую длину рёбер, а также равную площадь.
  3. У додекаэдра 15 осей и плоскостей симметрии, причём любая из них проходит через вершину грани и середину противоположного ей ребра.

Икосаэдр

Не менее интересная, чем додекаэдр, фигура икосаэдр представляет собой объёмное геометрическое тело с 20 равными гранями. Среди свойств правильного двадцатигранника можно отметить следующие:

  1. Все грани икосаэдра - равнобедренные треугольники.
  2. В каждой вершине многогранника сходится пять граней, и сумма смежных углов вершины составляет 300.
  3. Икосаэдр имеет так же, как и додекаэдр, 15 осей и плоскостей симметрии, проходящих через середины противоположных граней.

Полуправильные многоугольники

Кроме Платоновых тел, в группу выпуклых многогранников входят также Архимедовы тела, которые представляют собой усечённые правильные многогранники. Виды многогранников данной группы обладают следующими свойствами:

  1. Геометрические тела имеют попарно равные грани нескольких типов, например, усечённый тетраэдр имеет так же, как и правильный тетраэдр, 8 граней, но в случае Архимедова тела 4 грани будут треугольной формы и 4 - шестиугольной.
  2. Все углы одной вершины конгруэнтны.

Звёздчатые многогранники

Представители необъёмных видов геометрических тел - звёздчатые многогранники, грани которых пересекаются друг с другом. Они могут быть образованы путём слияния двух правильных трёхмерных тел либо в результате продолжения их граней.

Таким образом, известны такие звёздчатые многогранники, как: звёздчатые формы октаэдра, додекаэдра, икосаэдра, кубооктаэдра, икосододекаэдра.

Теоретическая часть

Определение и классификация многогранников

Теория многогранников, в частности выпуклых многогранников, - одна из самых увлекательных глав геометрии.

Л.А. Люстерник

Многогранники представляют собой простейшие тела в пространстве, подобно тому, как многоугольники - простейшие фигуры на плоскости. С чисто геометрической точки зрения многогранник - это часть пространства, ограниченная плоскими многоугольниками - гранями. Стороны и вершины граней называют рёбрами и вершинами самого многогранника. Грани образуют так называемую многогранную поверхность. На многогранную поверхность обычно накладывают такие ограничения:

1) каждое ребро должно являться общей стороной двух и только двух граней, называемых смежными;

2) каждые две грани можно соединить цепочкой последовательно смежных граней;

3) для каждой вершины углы прилежащих к этой вершине граней должны ограничивать некоторый многогранный угол.

Геометрические тела

Многогранники

Не многогранники

Фигура на рисунке 1 является многогранником. Совокупность из 18 квадратов на рисунке 2 многогранником не является, потому что не выполняются ограничения, накладываемые на многогранные поверхности.

Многогранник называется выпуклым, если он лежит по одну сторону от плоскости любой из его граней.

Многогранник называется правильными, если:

Он выпуклый;

Все его грани являются равными правильными многоугольниками;

В каждой его вершине сходится одинаковое число граней;

Все его двухгранные углы равны.

Виды правильных многогранников

«Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук»

Л. Кэррол

Первые упоминания о правильных многогранниках

Школе Пифагора приписывают открытие существования 5 типов правильных выпуклых многогранников. Позже в своем трактате «Тимей» другой древнегреческий ученый Платон изложил учение пифагорейцев о правильных многогранниках. С тех пор правильные многогранники стали называться Платоновыми телами. Правильным многогранником посвящена последняя, XIII книга знаменитого труда Евклида «Начала». Существует версия, что Евклид написал первые 12 книг для того, чтобы читатель понял написанную в XIII книге теорию правильных многогранников, которую историки математики называют «венцом «Начал». Здесь установлено существование всех пяти типов правильных многогранников и доказано, что других правильных многогранников не существует.

Почему их только 5

А все-таки, почему же правильных многогранников только пять? Ведь правильных многоугольников на плоскости - бесконечное число.

а) Пусть грани правильного многогранника - правильные треугольники, каждый плоский угол при этом равен 60 о. Если при вершине многогранного угла n плоских углов, то 60 о n < 360 o , n < 6,

n = 3, 4, 5, т.е. существует 3 вида правильных многогранников с треугольными гранями. Это тетраэдр, октаэдр, икосаэдр.

б) Пусть грани правильного многогранника - квадраты, каждый плоский угол составляет 90 о. Для n - гранных углов 90 о n<360 о, n < 4,

n = 3, т.е. квадратные грани может иметь лишь правильный многогранник с трехгранными углами - куб.

в) Пусть грани - правильные пятиугольники, каждый плоский угол равен 180 о (5 - 2) : 5 = 108 о, 108 о n<360 о, n< n = 3, додекаэдр.

г) У правильного шестиугольника внутренние углы:

L = 180 о (6 - 2) : 6 = 120 о

В этом случае невозможен даже трехгранный угол. Значит, правильных многогранников с шестиугольными и более гранями не существует.

Почему правильные многогранники получили такие названия

Это связано с числом их граней. В переводе с греческого языка:

эдрон - грань, окто - восемь, значит, октаэдр - восьмигранник

тетра - четыре, поэтому тетраэдр - пирамида, состоящая из четырех равносторонних треугольников,

додека - двенадцать, додекаэдр состоит из двенадцати граней,

гекса - шесть, куб - гексаэдр, так как у него шесть граней,

икоси - двадцать, икосаэдр - двадцатигранник.

Совершенство форм, красивые математические закономерности, присущие правильным многогранникам, явились причиной того, что им приписывались различные магические свойства. Они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Многогранник – геометрическое тело, ограниченное со всех сторон плоскостями- плоскими многоугольниками.

Выпуклый многогранник- если он расположен по одну сторону от каждой из его граней.

Призма- многогранник, 2 грани которого n-угольники, лежащие в параллельной плоскости, а остальные n-грани-параллелограммы.

Многоугольники, расположенные в параллельных плоскостях-основания.

Совокупность боковых граней образует боковую поверхность.

Призмы делятся на:

1)по числу углов основания(треугольная, четырёхугольная и т.д.)

2)по наклону рёбер к основанию(прямая, наклонная)

Правильная призма- основание правильный многоугольник.

Высота призмы- расстояние между основаниями.

Построение чертежа призмы сводится к построению её вершин (характерных точек) и построению прямых линий ограниченных проекцией.

Развёрткой многогранника наз фигура, полученная в результате совмещения всех его граней с плоскостью.

Развёртки изображают сплошными основными линиями. При необходимости наносят линии изгиба. Для развёртки принимают только натуральные величины элементов.

Пирамида- многогранник, одна грань кот n-угольник, а остальные – треугольники, имеющие общую вершину.

Если основание пирамиды- правильный многоугольник- правильная пирамида. Высота будет проходить через центр основания. Существую и др виды многогранников-призматоид, тэтраэдр, и др

10. Поверхности. Образование и задание поверхностей. Поверхности вращения.

Поверхность-общая часть двух смежных частей пространства, непрерывное множество положений перемещающихся в пространстве линий(траектория движения).Поверхности вращения- такие поверхности, кот образуются при вращении некоторой образующей вокруг неподвижной прямой- оси вращения.

При вращении каждая точка образующей описывает окружность, центр вращения которой находится на оси вращения. Эти окружности называются параллельными.

Параллель наибольшего диаметра наз экватор.

Цилиндр-геометрическое тело, ограниченное цилиндрической поверхностью и 2-мя параллельными плоскостями.

Если направляющая явл окружностью- круговой цилиндр.

Если образующая перпендикулярна онованию- прямой цилиндр.

Конус-геометрич тело, ограниченное конической поверхн, расположенной по одну сторону от вершины и плоскостью в основании пересек все образующие.

Сферическая поверхность. Получается при вращении окружности или её части расположенной в плоскости этой окружности при условии, что центр окружности находится на оси вращения.

Торическая поверхность- получается при вращении окружности или ей части вокруг оси, расположенной в плоскости этой окружности но не проходящей через её центр.

11. Пересечение поверхностей плоскостью.

При пересечении поверхности или какой-либо геометрической фигуры плоскостью получается плоская фигура, которую называют сечением.

Определение проекций линий сечения следует начинать с построения опорных точек - точек, расположенных на очерковых образующих поверхности (точки, определяющие границы видимости проекций кривой); точек, удаленных на экстремальные (максимальное и минимальное) расстояния от плоскостей проекций. После этого определяют произвольные точки линии сечения.

Построение сечения многогранников.

Многогранником называют пространственную фигуру, ограниченную замкнутой поверхностью, состоящей из отсеков плоскостей, имеющих форму многоугольников (в частном случае треугольников).

Стороны многоугольников образуют ребра, а плоскости многоугольников - грани многогранника.

Проекциями сечения многогранников, в общем случае, являются многоугольники, вершины которых принадлежат ребрам, а стороны - граням многогранника*. Поэтому задачу по определению сечения многогранника можно свести к многократному решению задачи по определению точки встречи прямой (ребер многогранника) с плоскостью или к задаче по нахождению линии пересечения двух плоскостей (грани многогранника и секущей плоскости).

Первый путь решения называют способом ребер, второй - способом граней

Построение сечения поверхности вращения.

Вид фигуры сечения тел вращения плоскостью зависит от положения секущей плоскости.

При пересечении кругового цилиндра плоскостью в сечении могут получиться три фигуры сечения цилиндра:

а) окружность, если секущая плоскость перпендикулярна оси цилиндра;

б) эллипс, если секущая плоскость наклонена к оси цилиндра

в) прямоугольник, если секущая плоскость параллельна оси цилиндра

Муниципальное Образовательное Учреждение

Гимназия № 26

Геометрия

Основные виды многогранников и их свойства

Выполнила:

Ученица 9-1 класса

Байсакова Ляззат

Преподаватель:

Сысоева Елена Алексеевна

Челябинск


Введение

До настоящего времени в курсе геометрии мы занимались планиметрией - изучали свойства плоских геометрических фигур, то есть фигур, полностью расположенных в плоскости. Но большинство окружающих нас предметов не являются полностью плоскими, они расположены в пространстве. Раздел геометрии, в котором изучают свойства фигур в пространстве, называется стереометрией ( от др. греч. στερεός, "стереос" - "твёрдый, пространственный" и μετρέω - "измеряю").

Основными фигурами в пространстве являются точка , прямая и плоскость . Наряду с данными простейшими фигурами в стереометрии рассматриваются геометрические тела и их поверхности. При изучении геометрических тел, пользуются изображениями на чертеже.

Рисунок 1 Рисунок 2

На рисунке 1 изображена пирамида, на рисунке 2 - куб. Данные геометрические тела называются многогранниками. Рассмотрим некоторые виды и свойства многогранников.

Многогранная поверхность. Многогранник

Многогранной поверхностью называют объединение конечного числа плоских многоугольников такое, что каждая сторона любого из многоугольников является в то же время стороной другого (но только одного) многоугольника, называемого смежным с первым многоугольником.

От любого из многоугольников, составляющих многогранную поверхность, можно дойти до любого другого, двигаясь по смежным многоугольникам.

Многоугольники, составляющие многогранную поверхность, называются ее гранями; стороны многоугольников называются ребрами, а вершины - вершинами многогранной поверхности.

На рис.1 изображены объединения многоугольников, удовлетворяющие указанным требованиям и являющиеся многогранными поверхностями. На рис.2 изображены фигуры, не являющиеся многогранными поверхностями.

Многогранная поверхность делит пространство на две части - внутреннюю область многогранной поверхности и внешнюю область. Из двух областей внешней будет та, в которой можно провести прямые, целиком принадлежащие области.

5 Объединение многогранной поверхности и ее внутренней области называют многогранником. При этом многогранную поверхность и ее внутреннюю область называют соответственно поверхностью и внутренней областью многогранника. Грани, ребра и вершины поверхности многогранника называют соответственно гранями, ребрами и вершинами многогранника.

Пирамида

Многогранник, одна из граней которого - произвольный многогранник, а остальные грани - треугольники, имеющие одну общую вершину, называется пирамидой.

Многоугольник называется основанием пирамиды, а остальные грани (треугольники) называются боковыми гранями пирамиды.

Различают треугольные, четырехугольные, пятиугольные и т.д. пирамиды в зависимости от вида многоугольника, лежащего в основании пирамиды.

Треугольную пирамиду также называют тетраэдром. На рис.1 изображена четырехугольная пирамида SABCD с основанием ABCD и боковыми гранями SAB, SBC, SCD, SAD.

Стороны граней пирамиды называются ребрами пирамиды. Ребра, принадлежащие основанию пирамиды, называют ребрами основания, а все остальные ребра - боковыми ребрами. Общая вершина всех треугольников (боковых граней) называется вершиной пирамиды (на рис.1 точка S - вершина пирамиды, отрезки SA, SB, SC, SD - боковые ребра, отрезки АВ, ВС, CD, AD - ребра основания).

Высотой пирамиды называется отрезок перпендикуляра, проведенного из вершины пирамиды S к плоскости основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра). На рис.1 SO - высота пирамиды.

Правильная пирамида. Пирамида называется правильной, если основанием пирамиды является правильный многоугольник, а ортогональная проекция вершины на плоскость основания совпадает с центром многоугольника, лежащего в основании пирамиды.

Все боковые ребра правильной пирамиды равны между собой; все боковые грани - равные равнобедренные треугольники.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой этой пирамиды. На рис.2 SN - апофема. Все апофемы правильной пирамиды равны между собой.

Призма

Многогранник, две грани которого - равные n -угольники, лежащие в параллельных плоскостях, а остальные n граней - параллелограммы, называетсяn -угольной призмой.

многогранник пирамида призма параллелепипед

Пару равных n -угольников называют основаниями призмы. Остальные грани призмы называют ее боковыми гранями, а их объединение - боковой поверхностью призмы. На рис.1 изображена пятиугольная призма.

Стороны граней призмы называют ребрами, а концы ребер - вершинами призмы. Ребра, не принадлежащие основанию призмы, называют боковыми ребрами.

Призму, боковые ребра которой перпендикулярны плоскостям оснований, называют прямой призмой. В противном случае призма называется наклонной.

Отрезок перпендикуляра к плоскостям оснований призмы, концы которого принадлежат этим плоскостям, называют высотой призмы.

Прямая призма, основанием которой является правильный многоугольник, называется правильной призмой.

Параллелепипед

Параллелепипед - шестигранник, противоположные грани которого попарно параллельны. Параллелепипед имеет 8 вершин, 12 рёбер; его грани представляют собой попарно равные параллелограммы.

Параллелепипед называется прямым, если его боковые ребра перпендикулярны к плоскости основания (в этом случае 4 боковые грани - прямоугольники); прямоугольным, если этот параллелепипед прямой и основанием служит прямоугольник (следовательно, 6 граней - прямоугольники);

Параллелепипед , все грани которого квадраты, называется кубом.

Объём Параллелепипед равен произведению площади его основания на высоту.

Объем тела

Каждый многогранник имеет объем, который можно измерить с помощью выбранной единицы измерения объемов. За единицу измерения объемов принимают куб, ребро которого равно единице измерения отрезков. Куб с ребром 1 см называется кубическим сантиметром . Аналогично определяется кубический метр и кубический миллиметр , и т.д.

В процессе измерения объемов при выбранной единице измерения объем тела выражается положительным числом, которое показывает, сколько единиц измерения объемов и ее частей укладывается в этом теле. Число, выражающее объем тела, зависит от выбора единицы измерения объемов. Поэтому единица измерения объемов указывается после этого числа.

Основные свойства объемов:

1. Равные тела имеют равные объемы.

2. Если тело составлено из нескольних тел, то его объем равен сумме объемов этих тел.

Для нахождения объемов тел в ряде случаев удобно пользоваться теоремой, получившей название принцип Кавальери .

Принцип Кавальери состоит в следующем: если при пересечении двух тел любой плоскостью, параллельной некоторой заданной плоскости, получаются сечения равной площади, то объёмы тел равны между собой.

Заключение

Итак, многогранники изучает раздел геометрии под названием стереометрия. Многогранники бывают разных видов (пирамида, призма и т.д.) и имеют разные свойства. Также, следует отметить, что многогранники в отличие от плоских фигур имеют объем и располагаются в пространстве.

Большинство окружающих нас предметов находятся в пространстве, и изучение многогранников помогает нам составить представление об окружающей нас реальности с точки зрения геометрии.

Список используемой литературы

1. Геометрия. Учебник для 7-9 классов.

3. Википедия



Понравилась статья? Поделитесь ей
Наверх