Константа элиминации лекарственных средств. Элиминирование лекарств. Клиренс как интегральный показатель элиминирования. Понятие о периоде полувыведения. Общая фармакология. Фармакокинетика

Просмотренно: 6215 | Добавленно: 24 марта 2013

Процесс элиминации первого порядка может быть охарактеризован величиной клиренса, константы скорости элиминации и периодом полуэлиминации, которые являются величинами постоянными для каждого лекарственного средства.

Константа скорости элиминации (kel, мин-1) - показывает, какая часть лекарственного средства элиминируется из организма в единицу времени. Значение kel обычно находят путем решения фармакокинетического уравнения, описывающего процесс элиминации лекарства из крови, поэтому kel называют модельным показателем кинетики. Непосредственного отношения к планированию режима дозирования kel не имеет, но ее значение используют для расчета других фармакокинетических параметров.

Клиренс (Cl, мл/мин). Клиренс можно определить как объем крови, который очищается от лекарственного средства за единицу времени. Поскольку плазма (кровь) выступает как «видимая» часть объема распределения, то, иными словами, клиренс - фракция объема распределения, из которой лекарство выделяется в единицу времени. Если обозначить общее количество лекарства в организме через Аобщ , а количество, которое выделилось через Авыд , то тогда:
.
С другой стороны, из определения объема распределения следует, что общее количество лекарства в организме составляет Аобщ=Vd´Cтер/плазма . Подставляя это значение в формулу клиренса, мы получим:
.
Таким образом, клиренс - отношение скорости выведения лекарственного средства к его концентрации в плазме крови. В таком виде формулу клиренса используют для расчета поддерживающей дозы лекарства (Dп ), т.е той дозы лекарственного средства, которая должна скомпенсировать потерю лекарства и поддержать его уровень на постоянном уровне:
Скорость введения = скорость выведения = Cl´Cтер (доза/мин)
Dп = скорость введения´t (t - интервал, между приемом лекарства)
Различают общий клиренс, который отражает сумму всех процессов элиминации лекарства и клиренс каждого из органов элиминации (печени, почек, кожи, легких и др.). Таким образом, Clобщий=Clпочки+ Clпечень+ Clдругие органы .

Период полуэлиминации (t½, мин-1) - это время, необходимое для снижения концентрации лекарственного вещества в крови ровно наполовину. При этом не играет роли каким путем достигается снижение концентрации - при помощи биотрансформации, экскреции или же за счет сочетания обоих процессов. Обычно период полуэлиминации определяют из соотношения:

Все три показателя Vd, Cl и t½ связаны между собой следующими соотношениями:
и .
В случае кинетики нулевого порядка понятие константности клиренса, периода полуэлиминации и скорости элиминации утрачивает свой смысл - все эти параметры изменяются непрерывно, вместе с изменением концентрации лекарственного вещества в крови, т.е. они приобретают вид функциональной зависимости. Например, клиренс определяется как:
,
где Кm - концентрация лекарства, при которой скорость его элиминации составляет 50% от максимальной.

Сравните с классической формулой, которую используют в физиологии для определения почечного клиренса:. Здесь и далее все формулы и расчеты приводятся для однокамерной модели фармакокинетики, т.е. исходят из положения о том, что лекарственное средство равномерно и с одинаковой скоростью распределяется по всем органам и тканям.

ОМСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ХИМИИЛекция 16. Использование кинетики в
фармации
1.
2.
Константа всасывания. Константа элиминации.
Время полувыведения препарата.
Влияние температуры на скорость химической
реакции. Ускоренный метод определения сроков
годности лекарственного препарата.
Лектор: доцент Григорьева Марина Викторовна

Основной задачей фармакокинетики
является количественное описание с
помощью уравнений кинетики
протекание во времени процессов
всасывания, распределения,
метаболизма и экскреции препаратов.
На этой основе устанавливается связь
между концентрацией инородного
вещества в области его действия и
величиной эффекта.

1. Константа всасывания. Константа элиминации.

Фармакокинетика широко использует
приемы математического моделирования
хорошо известные из биологической
кибернетики. Простейшей моделью
организма с введенной в него дозой
лекарства является сосуд с раствором этого
лекарства. Объем сосуда можно считать
примерно равным объему жидкой среды
организма, в среднем около 7,5 л. Одна из
стенок сосуда полупроницаемая; пропускает
наружу лекарственный препарат и не
пропускает растворитель.

1. Константа всасывания. Константа элиминации.

т, мг
SO г. мин
Фармакокинетика введения и выведения препарата
из организма: а - сосуд, моделирующий жидкую
среду организма с введенным препаратом (доза т0),
б -кинетическая кривая введения и выведения
препарата из организма, Ʈ 1/2- время
полувыведения (20 мин)

1. Константа всасывания. Константа элиминации.

Рассмотрим обычный путь
лекарственного вещества в организме.
Его можно рассматривать как
последовательность двух процессов:
всасывание из желудка в кровь
(характеризуется константой
всасывания kв и выведение
(элиминация) из крови в мочу
(характеризуется константой выведения
kе).

1. Константа всасывания. Константа элиминации.

Желудок


Кровь


Моча

Кинетика изменения массы лекарства в
желудке тж,крови тк и моче тм описывается
системой трех дифференциальных
уравнений, которые составляются для
скорости простых реакций на основе закона
действующих масс:

1. Константа всасывания. Константа элиминации.

dmж
ke mж
d
dmк
ke mж ke mк
d
dmм
ke mк
d

1. Константа всасывания. Константа элиминации.

Графики зависимостей массы от времени
называются кинетическими кривыми.
Содержание лекарства в крови в
зависимости от времени описывается
кривой с максимумом.
Максимальное содержание лекарства в
крови должно быть больше некоторого
минимального (действующего)
значения, но не выше некоторого
максимального (токсичного) значения.

1. Константа всасывания. Константа элиминации.

Уравнение кинетики выведения препарата
(третье уравнение) аналогично уравнению
кинетики реакции первого порядка. Где m0 –
начальная доза препарата.
m m0 e
k e

1. Константа всасывания. Константа элиминации.

Константа элиминации kе, является
характеристикой препарата и для
разных препаратов имеет различные
значения порядка 10-3 – 10-25 с-1.
Время полувыведения инородного
вещества из организма рассчитывают
с помощью выражения:Ʈ½ = 0,69/ kе.

1. Константа всасывания. Константа элиминации.

Времена полувыведения различных лекарств
из организма находятся в пределах порядка
100-10000 с. Это значит, что в организме
лекарство может находиться от нескольких
десятков минут до нескольких часов.
Значение времени полувыведения очень
важно знать врачу, т.к. эта величина
позволяет определить дозировку лекарства и
частоту его приема.

Температурные зависимости скорости
химических реакций подразделяют на:
а -нормальная; б - аномальная; в ферментативная

2. Влияние температуры на скорость реакций

Нормальная зависимость скорости от
температуры выражают эмпирическим
правилом Вант-Гоффа (1884 г), согласно
которому повышение температуры на 10°
увеличивает константу скорости реакции в
2-4 раза.
k 2 1 VT2
k1 2 VT1
T2 T1
10

2. Влияние температуры на скорость реакций

На основе правила Вант-Гоффа
разработан метод «ускоренного
старения лекарственной формы» для
определения срока ее годности.
Препарат хранят при температурах
превышающих обычные температуры
хранения, он быстрее приходит в
негодность. На основе полученных
данных можно предположить какие
процессы и в течение какого времени
будут протекать с лекарством при
обычной температуре хранения.

2. Влияние температуры на скорость реакций

Этот метод позволяет, во-первых,
значительно сократить время,
необходимое для установления срока
годности лекарства в условиях
хранения его при известной
температуре склада и, во-вторых,
определить температуру хранения,
обеспечивающую заданный срок
годности.

2. Влияние температуры на скорость реакций

Для лекарственных форм γ=2, тогда срок
годности можно рассчитать по уравнению:
2 2
T2 T1

Константа элиминации – процентное отношение количества вещества, элиминировавшего за сутки, к количеству вещества, имевшемуся в организме на начало суток.

В большинстве реальных клинических ситуаций данное соотношение не является константой, поэтому вместо константы элиминации используют расчетную величину – кажущуюся константу элиминации.

Константа элиминации измеряется в процентах.

Квота элиминации – количество вещества (в граммах или принятых единицах), элиминирующего из организма за сутки.

Например, константа элиминации строфантина составляет 30%. Это означает, что в течение суток из организма выводится 30% имевшегося лекарства. Если ввести внутривенно 0,5 мг строфантина, то через 24 часа его количество в организме будет меньше на 30% и составит 0,35 мг. Квота элиминации в этом случае окажется равной 0,15 мг (0,5мг x 30%).

Клиренс

Наиболее показательной и широко используемой величиной, используемой для характеристики элиминации, является общий клиренс лекарственного вещества.

Клиренс – условный объем плазмы крови, который полностью очищается от лекарственного вещества за единицу времени.

Общий клиренс лекарственного вещества складывается из клиренсов во всех органах и тканях, участвующих в элиминации данного вещества. Можно отдельно рассчитывать почечный клиренс, печеночный клиренс и т.д.

В фармакокинетических расчетах широко используется формула для расчета общего клиренса: Cl общ =Vd·β, гдеCl общ – общий клиренс,Vd– кажущийся объем распределения, аβ– константа элиминации (кажущаяся константа элиминации).

Период полуэлиминации

Важной характеристикой, позволяющей врачу определить скорость элиминации, является также период полуэлиминации. Его обозначают как T ½ и иногда называют также периодом полужизни.

Период полуэлиминации – время, за которое концентрация вещества в плазме крови снижается наполовину.

Следует иметь в виду, что продолжительность действия препарата часто не совпадает с периодом полуэлиминации. Она определяется продолжительностью сохранения терапевтической концентрации, причем минимальная терапевтическая концентрация может быть как существенно меньше, так и больше, чем половина начальной концентрации препарата.

Режимы дозирования лекарств. Насыщающая и поддерживающая терапия. Ударная доза

Дозы и кратность введения препарата, а также его элиминация определяют содержание лекарственного вещества в организме и его концентрацию в плазме крови. После однократного введения концентрация вещества в плазме чаще всего снижается следующим образом:

При повторном введении на достижение и поддержание терапевтической концентрации лекарства влияет режим его дозирования.

Режим дозирования – схема, по которой производится повторное введение лекарства в организм.

При многократном введении от приема к приему концентрация вещества в плазме крови сначала постепенно растет, а потом устанавливается на стабильном уровне.

Насыщающая терапия

Поддерживающая терапия

В этом случае период роста концентраций можно назвать фазой насыщения (нагрузки) , а период постоянных концентраций –фазой поддержания . Переход от фазы насыщения к фазе поддержания осуществляется в тот момент, когда квота элиминации, возрастающая вместе с ростом плазменной концентрации вещества, сравнивается с вводимой за соответствующий период дозой препарата.

Нагрузочная и поддерживающая дозы могут быть одинаковыми или различными. Это зависит от периода полуэлиминации препарата, широты его терапевтического действия, а также необходимой скорости получения эффекта.

В некоторых случаях (например, при химиотерапии) наличие фазы насыщения является нежелательным. В таких случаях целесообразно начинать терапию с ударной дозы.

Ударная доза – повышенная доза, позволяющая достичь терапевтической концентрации препарата в крови уже после первого его введения в организм.

При рассмотрении физиологических процессов (разделы 6.6; 7.2.5; Глава 9), определяющих фармакокинетические показатели нами была дана их характеристика. С целью лучшего понимания материала нами повторяются некоторые из вышеназванных параметров, а некоторые рассматриваются впервые.

Константа скорости элиминации (обозначение - Ке1, размерность - ч-1, мин-1) - параметр, характеризующий скорость элиминации препарата из организма путем экскреции и биотрансформации. В многочастевых моделях величина Ке1 обычно характеризует элиминацию препарата из центральной камеры, включающей кровь и ткани, быстро обменивающихся препаратом с кровью. Элиминацию препарата из организма в этом случае характеризует кажущаяся константа элиминации - комплексный параметр (обозначение Р, размерность - ч-1, мин-1), связанный с другими константами модели (Кір см. ниже).

Константа скорости абсорбции (всасывания) (обозначение К01, размерность - ч-1) параметр, характеризующий скорость поступления препарата из места введения в системный кровоток при внесосудистом способе введения.

Константа скорости перехода препарата между частями (камерами) в многочастевых (многокамерных) моделях (обозначение Кф размерность - ч-1, мин-1) параметр, характеризующий скорость выхода препарата из г"-ой камеры в /-ю. Например, в двухчастевой модели существуют две константы скорости перехода - одна характеризует скорость перехода из центральной (первой камеры) в периферическую (вторую) и обозначается /С,2; другая характеризует обратный процесс и обозначается К2Х. Отношение этих констант определяет равновесное распределение препарата. Суммарно кинетика процесса распределения между двумя камерами характеризуется комплексным параметром, который зависит от константы скоростей всех процессов, учитываемых моделью. В рамках двухчастевой модели этот параметр обозначают а, его размерность - ч-1, мин-1.

Константа скорости экскреции (обозначение Ке или Кех, размерность - ч-1, мин-1) параметр, характеризующий скорость выделения препарата с каким-либо экскретом: с мочой, калом, слюной, молоком и др. В рамках линейной модели эта константа должна совпадать по величине с константой скорости элиминации в том случае, если препарат выводится из организма только в неизменном виде одним путем, например, с мочой. В других случаях величина Кех равна доле от Ке1-

Период полу элиминации препарата (обозначение Тх/2, размерность - ч, мин) - время элиминации из организма половины введенной и поступившей дозы препарата. Соответствует времени уменьшения в два раза концентрации препарата в плазме (сыворотке) крови на участке моноэкспотенциального снижения плазменного (сывороточного) уровня препарата, т. е. в Р-фазе.

Величина Т|/2 определяется суммарно экскрецией и биотрансформацией препарата, т. е. его элиминацией. Период полуэлиминации однозначно зависит от константы скорости элиминации: для одночастевой модели - Т1/2 = 0,693/Keh для многочастевой - Т1/2 - 0,693/р.

Период полу абсорбции (полувсасывания) препарата (обозначение Тх/2а, размерность - ч, мин) - время, необходимое для абсорбции (всасывания) из места введения в системный кровоток половины введенной дозы. Параметр используется для описания кинетики препарата в случае его внесосудистого введения и однозначно зависит от константы скорости всасывания препарата.

Период полураспределения препарата (обозначение Тх/2а, размерность - ч, мин) - условный параметр, характеризующий в рамках двухчастевой модели распределение между центральной камерой, включающей плазму крови, и периферической камеры (органы, ткани). Величина Тх/2а соответствует времени достижения уровней препарата, равных 50 % от равновесных концентраций, которые наблюдаются при достижении равновесия между кровью и другими тканями.

Кажущаяся начальная концентрация препарата (обозначение С0 или С°, размерность - ммоль/л, мкг/л, нг/мл и др.) - условный параметр, равный той концентрации, которая получилась бы в плазме крови при условии введения препарата в кровь и мгновенного распределения его по органам и тканям (при анализе одночастевой модели) или в объеме центральной камеры (при анализе дву- и многочастевой моделей). Величина С при линейной кинетике препарата в организме прямопропорциональна дозе препарата.

Стационарная концентрация препарата в плазме крови (обозначение Css, размерность - ммоль/л, мкг/л, нг/мл) - та концентрация, которая устанавливается в плазме (сыворотке) крови при поступлении препарата в организм с постоянной скоростью.

В случае интермиттирующего введения (приема) препарата через одинаковые промежутки времени в одинаковых дозах используют понятие максимальная стационарная концентрация (С™х) и минимальная стационарная концентрация (С™п).

Объем распределения препарата (обозначение Vd или V, размерность - л, мл) - условный параметр, характеризующий степень захвата препарата тканями из плазмы (сыворотки) крови. Величина Vd в рамках одночастевой модели равна такому условному объему жидкости, в котором распределяется вся попавшая в организм доза препарата, чтобы получилась концентрация, равная кажущейся начальной концентрации (С0). Часто объем распределения относят к единице массы тела больного (G, кг) и получают удельный объем распределения (обозначение Ad, размерность - л/кг, мл/г). В много- частевых моделях вводят понятие объем распределения в і-ой камере (обозначение Vh размерность - л, мл). Например, при анализе двухчастевой модели рассчитывают объем первой, центральной камеры (1/), в которую входит и плазма крови. Общий или кинетический объем распределения в таких моделях (обозначение V$, размерность - л, мл) характеризует распределение препарата после достижения состояния квазистационарного равновесия между концентрацией препарата в крови (центральной камере) и других тканях (периферических камерах). Для двухчастевой модели справедливо выражение Кр = (kei/$)/Vu Для этой модели предложено также использовать параметр стационарный объем распределения (обозначение Vss, размерность - л, мл), который пропорционален величине объема распределения в первой камере.

Часто объем распределения называют «кажущимся», что только утяжеляет терминологию, но не вносит дополнительных разъяснений, поскольку условность этого параметра следует из его определения.

Общий клиренс препарата (синонимы: клиренс тела, клиренс плазмы (сыворотки), плазменный (сывороточный) клиренс; обозначение С1, или С1Т, размерность - мл/мин, л/час) - параметр, соответствующий объему тест-ткани, освобождающейся от препарата за единицу времени. В простейшем случае клиренс препарата - это отношение скорости элиминации всеми возможными путями к концентрации лекарства в биологических тканях.

Почечный (ренальный) клиренс препарата (обозначение С/поч, Clr, ClR, размерность - л/ч, мл/мин) - параметр, определяющий скорость элиминации лекарственного препарата из организма путем его экскреции почками. Величина С1Г соответствует (условно) той части объема распределения, из которой препарат элиминирует с мочой в единицу времени.

Внепочечный (экстраренальный) клиренс препарата (обозначение С1еп С/в/поч, С1т, размерность - л/ч, мл/мин) - параметр, характеризующий скорость элиминации из организма препарата другими путями помимо выделения с мочой, в основном за счет биотрансформации (метаболизма) препарата и его экскреции с желчью. Величина С1ег соответствует (условно) той части объема распределения, из которой препарата элиминирует в единицу времени суммарно всеми путями элиминации, кроме экскреции почками.

Площадь под кривой «концентрация-время» (синоним - площадь под фармакокинетической кривой; обозначение AUC или S, размерность - ммоль-ч-л-1, ммоль-мин-л-1, мкг-ч-мл-1, мкг-мин-мл_1, нг-ч-мл-1, нг мин-мл-1 и др.) - на графике в координатах концентрация препарата в плазме (сыворотке) крови, Ср - время после введения препарата, Г, площадь фигуры, ограниченной фармакокинетической кривой и осями координат. AUC связан с другим фармакокинетическим параметром - объемом распределения; AUC обратно пропорциональна общему клиренсу препарата. При линейности кинетики препарата в организме величина AUC пропорциональна общему количеству (дозе) препарата, попавшего в организм. Часто пользуются площадью не под всей фармакокинетической кривой (от нуля до бесконечности по времени), а площадью под частью этой кривой (от нуля до некоторого времени t)\ этот параметр обозначают AUC,.

Время достижения максимальной концентрации (обозначение £тах или /макс, размерность - ч, мин) - время достижения концентрации препарата в крови.

Подробности

Общая фармакология. Фармакокинетика

Фармакокинетика – раздел фармакологии, посвященный изучению кинетических закономерностей распределения лекарственных веществ. Изучает высвобождение лекартсвенных веществ, всасывание, распределение, депонирование, превращения и выделение лекарственных веществ.

Пути введения лекарственных средств

От пути введения зависят скорость развития эффекта, его выраженность и продолжительность. В отдельных случаях путь введения определяет характер действия веществ.

Различают:

1) энтеральные пути введения (через пищеварительный тракт)

При этих путях введения вещества хорошо всасываются, в основном, путем пассивной диффузии через мембрану. Поэтому ххорошо всасываются липофильные неполярные соединения и плохо – гидрофильные полярные.

Под язык (сублингвально)

Всасывание происходит очень быстро, вещества попадают в кровь, минуя печень. Однако, всассывающая поверхность невелика, и таким путем можно вводить только высокоактивные вещества, назначаемые в малах дозах.

Пример: таблетки нитроглицерина, содержащие 0,0005 г нитроглицерина. Действие наступает через 1-2 мин.

Через рот (per os)

Лекарственные вещества просто проглатывают. Всасывание происходит частично из желудка, но по большей части – из тонкого кишечника (этому способствуют значительная всасывающая поверхность кишечника и ее интенсивное кровоснабжение). Основных механизмом всасывания в кишечнике является пассивная диффузия. Всасывание из тонкой кишки происходит относительно медленно. Оно зависит от моторики кишечника, рН среды, количества и качества содержимого кишечника.

Из тонкого кишечника вещество через систему воротной вены печени попадает в печень и только затем – в общий кровоток.

Абсорбция веществ регулируется также специальным мембранным транспортером – Р-гликопротеином. Он способствует выведению веществ в просвет кишечника и препятствует их абсорбции. Известны ингибиторы этого вещества – циклоспорин А, хинидин, верапамил, итракназол и т.д.

Следует помнить, что некоторые лекарственные вещества нецелесообразно назначать внутрь, так как они разрушаются в ЖКТ под действием желудочного сока и ферментов. В таком случае (или же если препарат оказывает раздражающее действие на слизистую желудка), его назначают в капсулах или драже, которые растворяются только в тонком кишечнике.

Ректально (per rectum)

Значительная часть вещества (около 50%)поступает в кровоток, минуя печень. Кроме того, при этом пути введения вещество не подвергается воздействию ферментов ЖКТ. Всасывание происходит путем простой диффузии. Ректально вещества назначают в виде суппозиториев или клизм.

Лекарственные вещества, имеющие структуру белков, жиров и полисахаридов, в толстой кишке не всасываются.

Также применяют подобный путь введения и для местного воздействия.

2) парентеральные пути введения

Введение веществ, минуя пищеварительный тракт.

Подкожный

Вещества могут всасываться путем пассивной диффузии и фильтрации через межклеточные промежутки. Таким орбазом, под кожу можно вводить и липофильные неполярные, и гидрофильные полярные вещества.

Обычно подкожно вводят растворы лекарственных веществ. Иногда – масляные растворы или взвеси.

Внутримышечное

Вещества всасываются так же, как и при подкожном введении, но более быстро, так как васкуляризация скелетных мышц более выражена по сравнению с подкожно-жировой клетчаткой.

В мышцы нельзя вводить гипертонические растворы, раздражающие вещества.

В то же время, в мышцы вводят масляные растворы, взвеси, для того, чтобы создать депо препарата, при котором лекарственное вещество может длительно всасываться в кровь.

Внутривенно

Лекарственное вещество сразу попадает в кровь, поэтому его действие развивается очень быстро – за 1-2 минуты. Чтобы не создавать слишком высокой концентрации вещества в крови, его обычно разводят в 10-20 мл изотонического раствора натрия хлорида и вводят медленно, в течение нескольких минут.

В вену нельзя вводить масляные растворы, взвеси в связи опасностью закупорки сосудов!

Внутриартериально

Позволяет создать в области, которая кровоснабжается данной артерией, высокую концентрацию вещества. Таким путем иногда вводят противоопухолевые препараты. Для уменьшения общетоксического действия может быть искусственно затруднен отток крови путем наложения жгута.

Интрастернальный

Обычно используют при технической невозможности внутривенного введения. Лекарство вводят в губчатое вещество грудины. Метод используется для детей и людей пожилого возраста.

Внутрибрюшинный

Редко используется, как правило, на операциях. Действие наступает очень быстро, так как большинство лекарств хорошо всасывается через листки брюшины.

Ингаляционно

Введение лекарственных препаратов путем вдыхания. Так вводят газообразные вещества, пары летучих жидкостей, аэрозоли.

Легкие хорошо кровоснабжаются, поэтому всасывание происходит очень быстро.

Трансдермально

При необходимости длительного действия высоколипофильных лекарственных веществ, которые легко проникают через неповрежденную кожу.

Интраназально

Для введения в полость носа в виде капель или спрея в расчете на местное или резорбтивное действие.

Проникновение лекарственных веществ через мембрану. Липофильные неполярные вещества. Гидрофильные полярные вещества.

Основные способы проникновения – пассивная диффузия, активный транспорт, облегченная диффузия, пиноцитоз.

Плазматическая мембрана состоит, в основном, из липидов, а это значит, что проникать путем пассивной диффузии через мембрану могут только липофильные неполярные вещества. Наоборот, гидрофильные полярные вещества (ГПВ) таким путем через мембрану практически не проникают.

Многие лекарственные вещества являются слабыми электролитами. В растворе часть таких веществ находится в неионизированной форме, т.е. в неполярной, а часть – в виде ионов, несущих электрические заряды.

Путем пассивной диффузии через мембрану проникает неионизированная часть слабого электролита

Для оценки ионизации используют величину pK a – отрицательный логарифм константы ионизации. Численно pK a равен pH, при котором ионизирована половина молекул соединения.

Для определения степени ионизации используют формулу Хендерсона-Хассельбаха:

pH = pKa+-для оснований

Ионизация оснований происходит путем их протонирования

Степень ионизации определяется так

pH = pK а +-для кислот

Ионизация кислот происходит путем их протонирования.

НА = Н + + А -

Для ацетилсалициловой кислоты рКа = 3.5. При рН = 4.5:

Следовательно, при рН = 4.5 ацетилсалициловая кислота будет почти полностью диссоциирована.

Механизмы всасывания веществ

Лекарственные вещества могут проникать в клетку путем:

Пассивной диффузии

В мембране есть аквапорины, через которые поступает вода в клетку и могут проходить путем пассивной диффузии по градиенту концентрации растворенные в воде гидрофильные полярные вещества с очень малыми размерами молекул (эти аквапорины очень узкие). Однако, такой тип поступления лекарственных веществ в клетке очень редок, так как размер большинства молекул лекарственных веществ превышает размер диаметр аквапоринов.

Также путем простой диффузии проникают липофильные неполярные вещества.

Активного транспорта

Транспорт лекарственного гидрофильного полярного вещества через мембрану против градиента концентрации с помощью специального переносчика. Такой транспорт избирателен, насыщаем и требует затрат энергии.

Лекарственное вещество, имеющее аффинитет к транспортному белку, соединяется с местами связывания этого переносчика с одной стороны мембраны, затем происходит конформационное изменение переносчика, и, наконец, вещество высвобождается с другой стороны мембраны.

Облегченной диффузии

Транспорт гидрофильного полярного вещества через мембрану специальной транспортной системой по градиенту концентрации, без затрат энергии.

Пиноцитоза

Впячивания клеточной мембраны, окружающие молекулы вещества и образующие везикулы, которые проходят через цитоплазму клетки и высвобождают вещество с другой стороны клетки.

Фильтрации

Через поры мембран.

Также имеет значение фильтрация лекарственных веществ через межклеточные промежутки.

Фильтрация ГПВ через межклеточные промежутки имеет важное значение при всасывании, распределении и выведении и зависит от:

а) величины межклеточных промежутков

б) величины молекул веществ

1) через промежутки между клетками эндотелия в капиллярах почечных клубочков путем фильтрации легко проходят большинство лекарственных веществ, находящихся в плазме крови, если они не связаны с белками плазмы.

2) в капиллярах и венулах подкожно-жировой клетчатки, скелетных мышц промежутки между клетками эндотелия достаточны для прохождения большинства лекарственных веществ. Поэтому при введении под кожу или в мышцы хорошо всасываются и проникают в кровь и липофильные неполярные вещества (путем пассивной диффузии в липидной фазе), и гидрофильные полярные (путем фильтрации и пассивной диффузии в водной фазе через промежутки между клетками эндотелия).

3) при введении ГПВ в кровь вещества быстро проникают в большинство тканей через промежутки между эндотелиоцитами капилляров. Исключения вещества, для которых существуют системы активного транспорта (противопаркинсонический препарат левадопа) и ткани, отделенные от крови гистогематическими барьерами. Гидрофильные полярные вещества могут проникнуть через такие барьеры только в некоторых местах, в которых барьер мало выражен (в area postrema продолговатого мозга проникают ГПВ в триггер-зону рвотного центра).

Липофильные неполярные вещества легко проникают в центральную нервную системы через гемато-энцефалический барьер путем пассивной диффузии.

4) В эпителии ЖКТ межклеточные промежутки малы, поэтому ГПВ достаточно плохо всасываются в нем. Так, гидрофильное полярное вещество неостигмин под кожу назначают в дозе 0,0005 г, а для получения сходноого эффекта при назначении внутрь требуется доза 0,015 г.

Липофильные неполярные вещества легко всасываются в ЖКТ путем пассивной диффузии.

Биодоступность. Пресистемная элиминация.

В связи с тем, что системное действие вещества развиваеся только при попадании его в кровоток, откуда оно поступает в ткани, предложен термин «биодоступность».

В печени многие вещества подвергаются биотрансформации. Частично вещество может выделяться в кишечник с желчью. Именно поэтому в кровь может попасть лишь часть вводимого вещества, остальная часть подвергается элиминации при первом прохождении через печень.

Элиминация – биотрансформация + экскреция

Кроме того, лекарства могут не полностью всасываться в кишечнике, подвергаться метаболизму в стенке кишечника, частично выводиться из него. Все это, вместе с элиминацией при первом прохождении через печень называют пресистемной элиминацией .

Биодоступность – количество неизмененного вещества, попавшего в общий кровоток, в процентном отношении к введенному количеству.

Как правило, в справочниках указано значения биодоступности при их назначении внутрь. Например, биодоступность пропранолола – 30%. Это означает, что при введении внутрь в дозе 0.01 (10 мг) только 0,003 (3 мг) неизмененного пропранолола попадает в кровь.

Для определения биодоступности лекарство вводят в вену (при в/в способе введения биодоступность вещества составляет 100%). Через определенные интервалы времени определяются концентрации вещества в плазме крови, затем строят кривую изменения концентрации вещества во времени. Затем ту же дозу вещества назначают внутрь, определяют концентрацию вещества в крови и также строят кривую. Измеряют площади под кривыми – AUC. Биодоступность – F – определяют как отношение AUC при назначении внутрь к AUC при внутревенном введении и обозначают в процентах.

Биоэквивалентность

При одинаковой биодоступности двух веществ скорость их поступления в общий кровоток может быть различной! Соответственно различными будут:

Время достижения пиковой концентрации

Максимальная концентрация в плазме крови

Величина фармакологического эффекта

Именно поэтому вводят понятие биоэквивалентность.

Биоэквивалентность – означает сходные биодоступность, пик действия, характер и величину фармакологического эффекта.

Распределение лекарственных веществ.

При попадании в кровоток липофильные вещества, как правило, распределяются в организме относительно равномерно, а гидрофильные полярные – неравномерно.

Существенное влияние на характер распределения веществ оказывают биологические барьеры, которые встречаются у них на пути: стенки капилляров, клеточные и плазматические мембраны, гемато-энцефалический и плацентарный барьеры (уместно посмотреть раздел «Фильтрафия через межклеточные промежутки»).

Эндотелий капилляров мозга не имеет пор, там практически отсутствует пиноцитоз. Также роль играют астроглии, которые увеличивают барьерную силу.

Гематоофтальмический барьер

Препятствует проникновению гидрофильных полярных веществ из крови в ткань глаза.

Плацентарный

Препятствует проникновению гидрофильных полярных веществ из организма матери в организм плода.

Для характеристики распределения лекарственного вещества в системе однокамерной фармакокинетической модели (организм условно представляется как единое пространство, заполненное жидкостью. При введении лекарственное вещество мгновенно и равномерно распределяется) используют такой показатель как кажущийся объем распределения - V d

Кажущийся объем распределения отражает предположительный объем жидкости, в котором распределяется вещество.

Если для лекарственного вещества V d = 3 л (объем плазмы крови), то это означает, что вещество находится в плазме крови, не проникает в форменные элементы крови и невыходит за пределы кровеносного русла. Возможно, это высокомолекулярное вещество (V d для гепарина = 4 л).

V d = 15 л означает, что вещество находится в плазме крови (3 л), в межклеточной жидкости (12 л) и не проникает в клетки тканей. Вероятно, это гидрофильное полярное вещество.

V d = 400 – 600 – 1000л означает, что ещество депонировано в периферических тканях и его концентрация в крови низкая. Например, для имипрамина – трициклический антидепрессант - V d = 23л/кг, то есть примерно 1600 л. Это означает, что концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ неэффективен.

Депонирование

При распределении лекарственного вещества в организме часть может задерживаться (депонироваться) в различных тканях. Из депо вещество высвобождается в кровь и оказывает фармакологическое действие.

1) Липофильные вещества могут депонироваться в жировой ткани. Средство для наркоза тиопентал-натрий вызывает наркоз продолжительнотью 15-20 минут, так как 90% тиопентала-натрия депонируется в жировой ткани. После прекращения наркоза наступает посленаркозный сон 2-3 часа в связи с высвобождением тиопентала-натрия.

2) Тетрациклины на длительное время депонируются в костной ткани. Поэтому не назначают детям до 8 лет, так как может нарушить развитие костей.

3) Депонирование, связанное с плазмой крови. В соединении с белками плазмы вещества не проявляют фармакологической активности.

Биотрансформация

В неизменном виде выделются лишь высокогидрофильные ионизированные соединения, средства для ингаляционного наркоза.

Биотрансформация большинства веществ происходит в печени, где обычно создаются высокие концентрации веществ. Кроме того, может происходить биотрансформация в легких, почках, стенке кишечника, коже и т.д.

Различают два основных вида биотрансформации:

1) метаболическая трансформация

Превращение веществ за счет окисления, восстановления и гидролиза. Окисление происходит, в основном, за счет микросомальных оксидаз смешанного действия при участии НАДФ, кислорода и цитохрома Р-450. Восстановление происходит под влиянием системы нитро- и азоредуктаз и т.п. Гидролизируют, обычно, эстерзы, карбоксилэстеразы, амидазы, фосфатазы и т.д.

Метаболиты, как правило, менее активны, чем исходные вещества, но иногда активнее них. Например: эналаприл метаболизируется в энаприлат, который оказывает выраженное гипотензивное действие. Однако, он плохо всасывается в ЖКТ, потому стараются вводить в/в.

Метаболиты могут быть токсичнее исходных веществ. Метаболит парацетамола – N-ацетил-пара-бензохинонимин при передозировке вызывает некроз печени.

2) конъюгация

Биосинтетический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам ряда химических группировок или молекул эндогенных соединений.

Процессы идут либо один за другим, либо протекают отдельно!

Различают также :

-специфическую биотрансформацию

Отдельный фермент воздействует на одно или несколько соединений, проявляя при этом высокую субстратную активность. Пример: метиловый спирт окисляется алкогольдегидрогеназой с образованием формальдегидом и муравьиной кислоты. Этиловый спирт также окисляется аклогольдегидрогеназой, но аффинитет этанола к ферменту значительно выше, чем у метанола. Поэтому этанол может замедлять биотрансформацию метанола и уменьшать его токсичность.

-неспецифическую биотрансформацию

Под влиянием микросомальных ферментов печени (в основном, оксидазы смешанных функций), локализованных в гладкоповерхностных участках эндоплазматического ретикулума клеток печени.

В результате биотрансформации липофильные незаряженные вещества обычно превращаются в гидрофильные заряженные, поэтому легко выводятся из организма.

Выведение (экскреция)

Лекарственные вещества, метаболиты и конъюгаты, в основном выводятся с мочой и желчью.

-с мочой

В почках низкомолекулярные соединения, растворенные в плазме (не связанные с белками), фильтруются через мембраны капилляров клубочков и капсул.

Также активную роль играет активная секреция веществ в проксимальном канальце с участием транспортных систем. Этим путем выделяются органические кислоты, салицилаты, пенициллины.

Вещества могут замедлять выведение друг друга.

Липофильные незаряженные вещества подвергаются реабсорбции путем пассивной диффузии. Гидрофильные полярные не реабсорбируются и выводятся с мочой.

Большое значение имеет рН. Для ускоренного выведения кислых соединений реакцию мочи стоит изменять в щелочную сторону, а для выведения оснований – в кислую.

- с желчью

Так выводятся тетрациклины, пенициллины, колхицин и др. Эти препараты значительно выделяются с желчью, затем частично выводятся с экскрементами, либо реабсорбируются (кишечно -печеночная рециркуляция ).

- с секретами разных желез

Особое внимание стоит обратить на то, что в период лактации молочными железами выделяются многие вещества, которые получает кормящая мать.

Элиминация

Биотрансформация + экскреция

Для количественной характеристики процесса используется ряд параметров: константа скорости элиминации (К elim), период полуэлиминации (t 1/2), общий клиренс (Cl T).

Константа скорости элиминации - К elim – отражает скорость удаления вещества из организма.

Период полуэлиминации - t 1/2 – отражает время, необходимое для снижения концентрации вещества в плазме на 50%

Пример: в вену введено вещество А в дозе 10 мг. Константа скорости элиминации = 0,1 / ч. Через час в плазме останется 9 мг, через два часа – 8,1 мг.

Клиренс - Cl T – количество плазмы крови, очищаемое от вещества в единицу времени.

Различают почечный, печеночный и общий клиренс.

При постоянной концентрайии вещества в плазме крови почечный клиренс – Cl r определяется так:

Cl = (V u х C u)/ C p [мл/мин]

Где C u и C p - концентрация вещества в моче и плазме крови, соответственно.

V u - скорость мочеотделения.

Общий клиренс Cl T определяется по формуле: Cl T = V d х K el

Общий клиренс показывает, какая часть объема распределения освобождается от вещества в единицу времени.



Понравилась статья? Поделитесь ей
Наверх