Выделение продуктов обмена происходит у гидры через. Род: Hydra = Гидры. Половое размножение гидры

Тело гидры имеет вид продолговатого мешочка, стенки которого состоят из двух слоёв клеток — эктодермы и энтодермы .

Между ними лежит тонкая студенистая неклеточная прослойка — мезоглея , служащая опорой.

Эктодерма формирует покров тела животного и состоит из нескольких видов клеток: эпителиально-мускульные , промежуточные и стрекательные .

Самые многочисленные из них — эпителиально-мускульные.

Эктодерма

эпителиально-мускульная клетка

За счёт мускульных волоконец , лежащих в основании каждой клетки, тело гидры может сокращаться, удлиняться и изгибаться.

Между эпителиально-мускульными клетками находятся группы мелких, округлых, с большими ядрами и небольшим количеством цитоплазмы клеток, называемых промежуточными .

При повреждении тела гидры, они начинают усиленно расти и делиться. Они могут превращаться в остальные типы клеток тела гидры, кроме эпителиально-мускульных.

В эктодерме находятся стрекательные клетки , служащие для нападения и защиты. В основном они расположены на щупальцах гидры. Каждая стрекательная клетка содержит овальную капсулу, в которой свёрнута стрекательная нить.

Строение стрекательной клетки со свернутой стрекательной нитью

Если добыча или враг прикоснётся к чувствительному волоску, который расположен снаружи стрекательной клетки, в ответ на раздражение стрекательная нить выбрасывается и вонзается в тело жертвы.

Строение стрекательной клетки с выброшенной стрекательной нитью

По каналу нити в организм жертвы попадает вещество, способное парализовать жертву.

Существует несколько типов стрекательных клеток. Нити одних пробивают кожные покровы животных и вводят в их тело яд. Нити других обвиваются вокруг добычи. Нити третьих — очень клейкие и прилипают к жертве. Обычно гидра «стреляет» несколькими стрекательными клетками. После выстрела стрекательная клетка погибает. Новые стрекательные клетки формируются из промежуточных .

Строение внутреннего слоя клеток

Энтодерма выстилает изнутри всю кишечную полость. В её состав входят пищеварительно-мускульные и железистые клетки.

Энтодерма

Пищеварительная система

Пищеварительно-мускульных клеток больше других. Мускульные волоконца их способны к сокращению. Когда они укорачиваются, тело гидры становится более тонким. Сложные движения (передвижение «кувырканием»), происходит за счёт сокращений мускульных волоконцев клеток эктодермы и энтодермы.

Каждая из пищеварительно-мускульных клеток энтодермы имеет 1-3 жгутика. Колеблющиеся жгутики создают ток воды, которым пищевые частички подгоняются к клеткам. Пищеварительно-мускульные клетки энтодермы способны образовывать ложноножки , захватывать и переваривать в пищеварительных вакуолях мелкие пищевые частицы.

Строение пищеварительно-мускульной клетки

Имеющие в энтодерме железистые клетки выделяют внутрь кишечной полости пищеварительный сок, который разжижает и частично переваривает пищу.

Строение желистой клетки

Добыча захватывается щупальцами с помощью стрекательных клеток, яд которых быстро парализует мелких жертв. Координированными движениями щупалец добыча подносится ко рту, а затем с помощью сокращений тела гидра «надевается» на жертву. Пищеварение начинается в кишечной полости (полостное пищеварение ), заканчивается внутри пищеварительных вакуолей эпителиально-мускульных клеток энтодермы (внутриклеточное пищеварение ). Питательные вещества распределяются по всему телу гидры.

Когда в пищеварительной полости оказываются остатки жертвы, которые невозможно переварить, и отходы клеточного обмена, она сжимается и опорожняется.

Дыхание

Гидра дышит растворённым в воде кислородом. Органов дыхания у неё нет, и она поглощает кислород всей поверхностью тела.

Кровеносная система

Отсутствует.

Выделение

Выделение углекислого газа и других ненужных веществ, образующихся в процессе жизнедеятельности, осуществляется из клеток наружного слоя непосредственно в воду, а из клеток внутреннего слоя — в кишечную полость, затем наружу.

Нервная система

Под кожно-мускульными клетками располагаются клетки звездчатой формы. Это нервные клетки (1). Они соединяются между собой и образуют нервную сеть (2).

Нервная система и раздражимость гидры

Если дотронутся до гидры (2), то в нервных клетках возникает возбуждение (электрические импульсы), которое мгновенно распространяется по всей нервной сети (3) и вызывает сокращение кожно-мускульных клеток и всё тело гидры укорачивается (4). Ответная реакция организма гидры на такое раздражение — безусловный рефлекс .

Половые клетки

С приближением холодов осенью в эктодерме гидры из промежуточных клеток образуются половые клетки.

Различают два вида половых клеток: яйцевые, или женские половые клетки, и сперматозоиды, или мужские половые клетки.

Яйца находятся ближе к основанию гидры, сперматозоиды развиваются в бугорках, расположенных ближе к ротовому отверстию.

Яйцевая клетка гидры похожа на амёбу. Она снабжена ложноножками и быстро растет, поглощая соседние промежуточные клетки.

Строение яйцевой клетки гидры

Строение сперматозоида гидры

Сперматозоиды по внешнему виду напоминают жгутиковых простейших. Они покидают тело гидры и плавают с помощью длинного жгутика.

Оплодотворение. Размножение

Сперматозоид подплывает к гидре с яйцевой клеткой и проникает внутрь нее, причем ядра обеих половых клеток сливаются. После этого ложноножки втягиваются, клетка округляется, на ее поверхности выделяется толстая оболочка — образуется яйцо. Когда гидра погибает и разрушается, яйцо остается живым и падает на дно. С наступлением тёплой погоды живая клетка, находящаяся внутри защитной оболочки, начинает делиться, образующиеся клеточки располагаются в два слоя. Из них развивается маленькая гидра, которая выходит наружу через разрыв оболочки яйца. Таким образом, многоклеточное животное гидра в начале своей жизни состоит всего из одной клетки — яйца. Это говорит о том, что предки гидры были одноклеточными животными.

Бесполое размножение гидры

При благоприятных условиях гидра размножается бесполым путём. На теле животного (обычно в нижней трети туловища) образуется почка, она растет, затем формируются щупальца и прорывается рот. Молодая гидра отпочковывается от материнского организма (при этом материнский и дочерний полипы прикрепляются щупальцами к субстрату и тянут в разные стороны) и ведет самостоятельный образ жизни. Осенью гидра переходит к половому размножению. На теле, в эктодерме закладываются гонады - половые железы, а в них из промежуточных клеток развиваются половые клетки. При образовании гонад гидр формируется медузоидный узелок. Это позволяет предполагать, что гонады гидры - сильно упрощенные споросаки, последний этап в ряду преобразования утраченного медузоидного поколения в орган. Большинство видов гидр раздельнополы, реже встречается гермафродитизм. Яйцеклетки гидр быстро растут, фагоцитируя окружающие клетки. Зрелые яйцеклетки достигают диаметра 0,5-1 мм. Оплодотворение происходит в теле гидры: через специальное отверстие в гонаде сперматозоид проникает к яйцеклетке и сливается с ней. Зигота претерпевает полное равномерное дробление, в результате которого образуется целобластула. Затем в результате смешанной деламинации (сочетание иммиграции и деламинации) осуществляется гаструляция. Вокруг зародыша формируется плотная защитная оболочка (эмбриотека) с выростами-шипиками. На стадии гаструлы зародыши впадают в анабиоз. Взрослые гидры погибают, а зародыши опускаются на дно и зимуют. Весной продолжается развитие, в паренхиме энтодермы путем расхождения клеток образуется кишечная полость, затем формируются зачатки щупалец, и из-под оболочки выходит молодая гидра. Таким образом, в отличие от большинства морских гидроидных, у гидры отсутствуют свободноплавающие личинки, развитие у неё прямое.

Регенерация

Гидра обладает очень высокой способностью к регенерации. При разрезании поперек на несколько частей каждая часть восстанавливает «голову» и «ногу», сохраняя исходную полярность - рот и щупальца развиваются на той стороне, которая была ближе к оральному концу тела, а стебелек и подошва - на аборальной стороне фрагмента. Целый организм может восстанавливаться из отдельных небольших кусочков тела (менее 1/100 объёма), из кусочков щупалец, а также из взвеси клеток. При этом сам процесс регенерации не сопровождается усилением клеточных делений и представляет собой типичный пример морфаллаксиса.

Передвижение

В спокойном состоянии щупальца вытягиваются на несколько сантиметров. Животное медленно водит ими из стороны в сторону, подстерегая добычу. При необходимости гидра может медленно передвигаться.

«Шагающий» способ передвижения

«Шагающий» способ передвижения гидры

Изогнув своё тело (1) и прикрепившись щупальцами к поверхности предмета (субстрата), гидра подтягивает к переднему концу тела подошву (2). Затем шагающее движение гидры повторяется (3,4).

«Кувыркающий» способ передвижения

«Кувыркающий» способ передвижения гидры

В другом случае она словно через голову кувыркается, поочерёдно прикрепляясь к предметам то щупальцами, то подошвой (1-5).

Рисунок: Строение пресноводной гидры. Лучевая симетрия гидры

Среда обитания, особенности строения и жизнедеятельности пресноводного полипа гидры

В озерах, речках или прудах с чистой, прозрачной водой на стеблях водных растений встречается маленькое полупрозрачное животное - полип гидра ("полип" означает "многоног"). Это прикрепленное или малоподвижное кишечнополостное животное с многочисленными щупальцами . Тело обыкновенной гидры имеет почти правильную цилиндрическую форму. На одном конце находится рот , окруженный венчиком из 5-12 тонких длинных щупалец, другой конец вытянут в виде стебелька с подошвой на конце. При помощи подошвы гидра прикрепляется к различным подводным предметам. Тело гидры вместе со стебельком обычно длиной до 7 мм, зато щупальца способны вытягиваться на несколько сантиметров.

Лучевая симметрия гидры

Если вдоль тела гидры провести воображаемую ось, то ее щупальца будут расходиться от этой оси во все стороны, как лучи от источника света. Свешиваясь вниз с какого-нибудь водного растения, гидра постоянно покачивается и медленно водит щупальцами, подстерегая добычу. Так как жертва может появиться с любой стороны, лучеобразно расставленные щупальца лучше всего соответствуют такому способу охоты.
Лучевая симметрия характерна, как правило, для животных, ведущих прикпрепленный образ жизни.

Кишечная полость гидры

Тело гидры имеет вид мешочка, стенки которого состоят из двух слоев клеток - наружного (эктодермы) и внутреннего (энтодермы). Внутри тела гидры имеется кишечная полость (отсюда и название типа - кишечнополостные).

Наружный слой клеток гидры - эктодерма

Рисунок: строение наружного слоя клеток - эктодермы гидры

Наружный слой клеток гидры называется - эктодерма . Под микроскопом в наружном слое гидры - эктодерме - видно несколько разновидностей клеток. Больше всего здесь кожно-мускулъных. Соприкасаясь боковыми сторонами, эти клетки создают покров гидры. В основании каждой такой клетки есть сократимое мускульное волоконце, играющее важную роль при движении животного. Когда волоконца всех кожно-мускульных клеток сокращаются, тело гидры сжимается. Если сокращаются волоконца только на одной стороне тела, то в эту сторону гидра и нагибается. Благодаря работе мускульных волоконец гидра может медленно передвигаться с места на место, поочередно "ступая" то подошвой, то щупальцами. Такое движение можно сравнить с медленным кувырканием через голову.
В наружном слое расположены и нервные клетки . Они имеют звездообразную форму, так как снабжены длинными отростками.
Отростки соседних нервных клеток соприкасаются между собой и образуютнервное сплетение , охватывающее все тело гидры. Часть отростков подходит к кожно-мускульным клеткам.

Раздражимость и рефлексы гидры

Гидра способна ощущать прикосновения, изменение температуры, появление в воде различных растворенных веществ и другие раздражения. От этого ее нервные клетки возбуждаются. Если к гидре прикоснуться тонкой иглой, то возбуждение от раздражения одной из нервных клеток передается по отросткам другим нервным клеткам, а от них - к кожно-мускульным клеткам. Это вызывает сокращение мускульных волоконец, и гидра сжимается в комочек.

Рисунок: раздражимость гидры

На этом примере мы знакомимся со сложным явлением в организме животного - рефлексом . Рефлекс состоит из трех последовательных этапов:восприятия раздражения , передачи возбуждения от этого раздражения по нервным клеткам и ответной реакции организма каким-либо действием. В связи с простотой организации гидры ее рефлексы очень однообразны. В дальнейшем мы ознакомимся с гораздо более сложными рефлексами у более высокоорганизованных животных.

Стрекательные клетки гидры

Рисунок: строкательные или крапивные клетки гидры

Все тело гидры и особенно ее щупальца усажены большим количествомстрекательных , или крапивных клеток. Каждая из этих клеток имеет сложное строение. Кроме цитоплазмы и ядра в ней заключена пузыревидная стрекательная капсула, внутри которой свернута тонкая трубочка -стрекательная нить . Наружу из клетки торчит чувствительный волосок . Как только рачок, малек рыбы или другое маленькое животное коснется чувствительного волоска, стрекательная нить стремительно распрямляется, ее конец выбрасьшается наружу и вонзается в жертву. По каналу, проходящему внутри нити, из стрекательной капсулы в тело добычи попадает яд, вызывающий гибель мелких животных. Как правило, выстреливает сразу много стрекательных клеток. Затем гидра щупальцами подтягивает добычу ко рту и заглатывает. Стрекательные клетки служат гидре также и для защиты. Рыбы и водные насекомые не едят гидр, обжигающих врагов. Яд из капсул по своему действию на организм крупных животных напоминает яд крапивы.

Внутренний слой клеток - энтодерма гидры

Рисунок: строение внутреннего слоя клеток - энтодермы гидры

Внутренний слой клеток - энтодерм а. Клетки внутреннего слоя - энтодермы - имеют сократимые мускульные волоконца, но основная роль этих клеток - переваривание пищи. Они выделяют в кишечную полость пищеварительный сок, под влиянием которого добыча гидры размягчается и распадается на мелкие частицы. Часть клеток внутреннего слоя снабжена несколькими длинными жгутиками (как у жгутиковых простейших). Жгутики находятся в постоянном движении и подгребают частицы к клеткам. Клетки внутреннего слоя способны выпускать ложноножки (как у амебы) и захватывать ими пищу. Дальнейшее пищеварение происходит внутри клетки, в вакуолях (как у простейших). Непереваренные остатки пищи выбрасьшаются наружу через рот.
Особых органов дыхания у гидры нет, растворенный в воде кислород проникает в гидру через всю поверхность ее тела.

Регенерация гидры

В наружном слое тела гидры имеются также очень маленькие округлые клетки с крупными ядрами. Эти клетки называют промежуточными . Они играют в жизни гидры очень важную роль. При всяком повреждении тела промежуточные клетки, расположенные вблизи от ран, начинают усиленно расти. Из них образуются кожно-мускульные, нервные и другие клетки, и раненое место быстро зарастает.
Если разрезать гидру поперек, то на одной из ее половинок вырастают щупальца и появляется рот, а на другой возникает стебелек. Получаются две гидры.
Процесс восстановления утраченных или поврежденных частей тела называют регенерацией . У гидры способность к регенерации развита очень сильно.
Регенерация в той или иной степени характерна также для остальных животных и человека. Так, у дождевых червей возможна регенерация целого организма из их частей, у земноводных (лягушки, тритоны) могут восстанавливаться целые конечности, разные части глаза, хвост и внутренние органы. У человека при порезе восстанавливается кожа.

Размножение гидры

Бесполое размножение гидры почкованием

Рисунок: бесполое размножение гидры почкованием

Гидра размножается бесполым и половым способами. Летом на теле гидры появляется маленький бугорок — выпячивание стенки ее тела. Бугорок этот растет, вытягивается. На его конце появляются щупальца, а между ними прорывается рот. Так развивается молодая гидра, которая первое время остается соединенной с материнской при помощи стебелька. Внешне все это напоминает развитие побега растения из почки (отсюда и название этого явления - почкование ). Когда маленькая гидра подрастет, она отделяется от материнского организма и начинает жить самостоятельно.

Половое размножение гидры

К осени, с наступлением неблагоприятных условий, гидры гибнут, но перед этим в их теле развиваются половые клетки. Различают два вида половых клеток: яйцевые , или женские, и сперматозоиды , или мужские половые клетки. Сперматозоиды похожи на жгутиковых простейших. Они покидают тело гидры и плавают с помощью длинного жгутика.

Рисунок: половое размножение гидры

Яйцевая клетка гидры похожа на амебу, имеет ложноножки. Сперматозоид подплывает к гидре с яйцевой клеткой и проникает внутрь ее, и ядра обеих половых клеток сливаются. Происходит оплодотворение . После этого ложноножки втягиваются, клетка округляется, на ее поверхности выделяется толстая оболочка — образуется яйцо . В конце осени гидра погибает, а яйцо остается живым и попадает на дно. Весной оплодотворенное яйцо начинает делиться, образующиеся клетки располагаются в два слоя. Из них развивается маленькая гидра, которая с наступлением теплой погоды выходит наружу через разрыв оболочки яйца.
Таким образом, многоклеточное животное гидра в начале своей жизни состоит из одной клетки — яйца.

Гидры - это особый род сидячих кишечнополостных, которые своим внешним видом и образом жизни напоминают растения, но все же они относятся к царству животных. Нервная система у гидры устроена таким образом, чтобы обеспечить возможность существу добывать достаточное количество пищи.

Разобраться какого типа нервная система у гидры непросто, так как эта структура довольно проста и встречается не только у этих существ, но также у некоторых видов медуз и других примитивных животных. Гидры - это сравнительно небольшие животные организмы, достигающие размеров от 2 до 20 мм.

Клетки, формирующие нервную систему, по форме напоминают звездочки, которые соединены лучами между собой, образовывая нейронную сеть. Нервная система располагается под кожно-мускульными клетками. Органа центрального восприятия электрических импульсов, вызванных внешними или внутренними раздражителями, у гидр нет. Максимальное количество нейронов составляет примерно 5000 шт. и все они соединены между собой.

Нервная система гидры получила название диффузного плексуса, так как имеет место рассеянное и неоднородное сплетение. Сгущение диффузного плексуса наблюдается в области подошвы, ротовой полости и щупалец. Последние исследования показали, что в области ротового отверстия имеется нервное кольцо, которое отличается схожей структурой с нервным кольцом, располагающимся по краю зонтика гидромедузы.

Нервная система гидры крайне примитивна, поэтому клетки, ее формирующие, не имеют четкого деления на моторные, вставочные и чувствительные. В то же время нужно учитывать, что все же определенное деление клеток нервной системы этого существа существует. Выделяются 2 основных вида нервных клеток - ганглиозные и чувствительные.

Строение этих 2 видов клеток имеет кардинальные отличия. Чувствительные клетки располагаются поперек эпителиального слоя и имеют 1 неподвижный жгутик, усеянный микроскопическими ворсинками. Этот жгутик выходит во внешнюю среду и проводит раздражители, действующие извне. Клетки ганглиозного типа располагаются у самого основания эпителиально-мускульного слоя, поэтому их отростки не могут воспринимать раздражители, действующие извне, но при этом они активно участвуют в сокращении мускулатуры, когда это требуется.

По своему морфологическому составу подавляющее большинство нервных клеток гидры являются биполярными, что обеспечивает им лучшую проводимость и возможность адекватно реагировать на раздражители, воздействующие на тело этого организма из внешней среды.

Несмотря на примитивность строения нервной системы гидры, все же проводимость обеспечивается не только электрическими, но и химическими реакциями. К химическим нейромедиаторам у такого организма, как гидра, относится серотонин, дофамин, гамма-аминокислота, норадриналин, глютамат, глицин, а кроме того больное количество разных видов нейропептидов.

Все эти химические вещества более свойственны сложным животным организмам, но небольшая их часть представлена и у простейших. Несмотря на то что у гидры отсутствует центральная нервная система, все же она способна воспринимать световые раздражители. Сравнительно недавно даже такие организмы, как медузы, считались полностью неспособными различать свет и тьму, но в последствии были обнаружены особые клетки, позволяющие этим существам, дрейфующим по океаническим просторам, различать свет и тьму и выбирать направление движения. Это крайне эффективно, ведь в более поверхностных слоях воды живет большее количество мелких ракообразных и других организмов, которыми питаются медузы.

У гидры имеется схожий механизм распознавания света и тьмы. Распознавать свет гидрам помогает особый чувствительный белок, который также известен, как опсин. Проведение генетического анализа этого белка, извлеченного из тела гидры, позволило выявить ряд схожий черт с аналогичным белком, имеющимся у человека. Подобное исследование показало, что белок опсин у человека и у гидры имеет общее происхождение.

Нервная система гидры довольно эффективна и обеспечивает этому существу лучшие условия для выживания. При минимальном касании к телу гидры, возбуждение которое зарождается в одной точке ее тела, быстро распространяется на другие. Учитывая, что нервный импульс мгновенно распространяется по телу гидры, наблюдается быстрое сокращение кожно-мускульной системы, из-за чего все тело существа быстро укорачивается. Подобная ответная реакция на имеющийся раздражитель извне считается безусловным рефлексом.

Нервные клетки, как и другие ткани тела гидры, отличаются значительной возможностью к регенерации. При разделении гидры на несколько частей каждая из таких половинок в дальнейшем может стать самостоятельным организмом и отрастить утерянные части.

Несмотря на то что гидры, как правило, остаются на одном месте на протяжении длительного времени, все же при необходимости это создание может медленно передвигаться, чтобы найти более удобное место для охоты на свою добычу. Особенности передвижения гидры также во многом обусловлены строением нервной системы этого существа.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Актуальность исследования. Изучение глобального начинается с малого. Изучив гидру обыкновенную (Hydra vulgaris ), человечество сможет осуществить прорыв в биологии, косметологии и медицине, приблизиться к бессмертию. Вживляя и контролируя аналог i-клеток в организме, человек получит возможность воссоздать недостающие части (органы) тела и сможет предотвратить смерть клеток.

Гипотеза исследования. Изучив особенности регенерации клеток гидры, можно контролировать возобновление клеток в человеческом организме и тем самым остановить процесс старения и приблизиться к бессмертию.

Объект исследования: гидра обыкновенная (Hydra vulgaris ).

Цель: ознакомиться с внутренним и внешним строением гидры обыкновенной (Hydra vulgaris) , на практике установить влияние различных факторов на поведенческие особенности животного, изучить процесс регенерации.

Методы исследования: работа с литературными источниками, теоретический анализ, эмпирические методы (эксперимент, сравнение, наблюдение), аналитические (сравнение полученных данных), моделирование ситуации, наблюдение.

ГЛАВА I . ГИДРА (Hydra)

Исторические сведения о гидре (Hydra )

Гидра (лат. Hydra ) - это животное типа кишечнополостные, впервые описано Антоаном Левенгуком г. Дельфте (Голландия, 1702 г.) Но открытие Левенгука было забыто на 40 лет. Повторно это животное открыл Абраам Трамблэ. В 1758 году К. Линней дал научное (латинское) название Hydra , а в просторечии его стали называть пресноводной гидрой. Если гидра (Hydra ) ещё в 19-м веке была найдена преимущественно в разных странах Европы, то в 20-м веке гидры были обнаружены во всех частях света и в самых различных климатических условиях (от Гренландии до тропиков).

«Гидра будет жить до тех пор, пока лаборантка не разобьет пробирку, в которой она живет!» Действительно, некоторые ученые считают, что это животное может жить вечно. В 1998 году биолог Даниэл Мартинес доказал это. Его работа наделала немало шума и обрела не только сторонников, но и противников. Упорный биолог решил повторить опыт, продлив его на 10 лет. Эксперимент ещё не окончен, однако нет причин сомневаться в его успехе.

Систематика гидр (Hydra )

Царство : Animalia (Животные)

Подцарство : Eumetazoa (Эуметазои или настоящие многоклеточные)

Раздел : Diploblastica (Двуслойные)

Тип/Отдел : Cnidaria (Кишечнополостные, книдарии, стрекающие)

Класс : Hydrozoa (Гидрозои, гидроидные)

Отряд/Порядок : Hydrida (Гидры, гидриды)

Семейство : Hydridae

Род: Hydra (Гидры)

Вид : Hydra vulgaris (Гидра обыкновенная)

Различают 2 рода гидр. Первый род гидр состоит лишь из одного вида - Chlorhydraviridissima . Второй род - Hydra Linnaeus . Этот род содержит 12 видов, которые хорошо описаны, и 16 видов, описанных менее полно, т.е. всего 28 видов.

Биологическое и экологическое значение гидры (Hydra ) в окружающем нас мире

1) Гидра — биологический фильтратор, очищает от взвешенных частиц воду;

2) Гидра является звеном в цепи питания;

3) С использованием гидр проводят опыты: влияние радиации на живые организмы, регенерация живых организмов в целом и др.

ГЛАВА II . ИССЛЕДОВАНИЕ ГИДРЫ ОБЫКНОВЕННОЙ

2.1 Выявление местонахождения гидры обыкновенной (Hydra vulgaris) в городе Витебске и Витебской области

Цель исследования: самостоятельно исследовать и определить местонахождение гидры обыкновенной (Hydravulgaris ) в городе Витебске.

Оборудование: водныйсачок, ведро, емкость для пробы воды.

Ход работы

Используя полученные знания о гидреобыкновенной(Hydra ), можно предположить, что чаще всего она обитает в прибрежной части чистых рек, озер, прудов, прикрепившись к подводным частям водных растений. Поэтому мною были выбраны следующие водные биоценозы:

    Ручьи: Гапеев, Дунай, Песковатик,Поповик, Рыбенец, Яновский.

    Пруды: 1000-летия Витебска, «Солдатское озеро».

    Реки: Западная Двина, Лучёса, Витьба.

Все животны были доставлены с экспедиции живыми в специальных банках или ведерках. Мною были взяты 11 проб воды , которые в дальнейшем были более подробно изучены в школе. Результаты отображены в таблице 1.

Таблица 1. Местонахождения гидры обыкновенной (Hydravulgaris ) в городе Витебске и Витебской области

Водный биоценоз

(название)

Была обнаружена гидра обыкновенная (hydravulgaris )

Не обнаружена гидра обыкновенная

(hydravulgaris )

Гапеев ручей

Ручей Дунай

Ручей Песковатик

Ручей Поповик

Ручей Рыбенец

Ручей Яновский

Пруд 1000-летия Витебска

Пруд «Солдатское озеро»

Река Западная Двина

Река Лучеса

Река Витьба

Выборку гидр производили с помощью водяного сачка. Каждую пробу воды тщательно изучали при помощи лупы и микроскопа. Из одиннадцати выбранных объектов лишь в пяти образцах была обнаружена гидра обыкновенная (Hydravulgaris), а в остальных шести пробах - её не обнаружили. Можно сделать вывод, что гидра обыкновенная (Hydravulgaris )обитает на территории Витебской области. Обнаружить ее можно почти во всех прудах и болотах, в особенности же в тех, где поверхность затянута ряской, на обломках ветвей, брошенных в воду. Главным условием успешного обнаружения гидр служит обилие корма. Если в водоеме есть дафнии и циклопы, то гидры быстро растут и множатся, а как только этого корма становится мало, то и они слабеют, уменьшаются в количестве и под конец совсем исчезают.

2.2 Влияние световых лучей на гидру обыкновенную (Hydra vulgaris)

Цель: изучить особенности поведения гидры обыкновенной (Hydravulgaris )при попадании солнечных лучей на поверхность ее тела.

Оборудование: микроскоп, лампа, солнечный свет, картонная коробка, диодный фонарь.

Ход работы

Гидра, как и многие другие низшие животные, обычно реагирует на всякое внешнее раздражение сокращением тела, подобным тому, которое наблюдается при «спонтанных» сокращениях . Рассмотрим, как реагируют гидры на различные формы раздражителей: механические, световые и другие формы лучистой энергии, температуру, химические вещества.

Повторим опыт Трамбле. Помещаем сосуд с гидрами в картонную коробку, на стороне которой вырезано отверстие в форме круга, так что оно приходится на середину стороны сосуда. Когда поместили сосуд таким образом, чтобы отверстие на картоне было повёрнуто к свету (т.е. к окну), то через некоторый промежуток времени отметили результат: полипы расположились на той стороне сосуда, где было это отверстие, и их скопление имело форму круга, расположенного напротив такого же, прорезанного в картоне. Я часто поворачивала сосуд в его футляре и всегда через некоторое время видела полипов, собравшихся в форме круга близ отверстия.

Повторим опыт, только теперь с искусственным светом . Посветим на отверстие в картоне диодным фонариком, через некоторый промежуток времени заметно, что полипы расположились на том боку сосуда, где было это отверстие, и их скопление имело форму круга (см. приложение).

Вывод : Гидры, несомненно, стремятся к свету. У них нет специальных органов для восприятия света - какого-либо подобия глаза. Существуют ли у них особые к свету восприимчивые клетки из числа чувствительных клеток - не установлено. Но несомненно, что к свету чувствительна преимущественно голова с прилегающей к ней частью туловища, тогда как нога мало восприимчива. Гидра способна различать направление света и двигаться к нему. Гидра проделывает своеобразные движения, которые называют «ориентировочными», она как бы шарит и нащупывает направление, откуда идёт свет. Эти движения довольно сложны и разнообразны.

Проведём опыт с двумя источниками света . Разместим по обе стороны сосуда с полипами диодные фонарики. Наблюдаем: в течение нескольких минут гидра никак не реагировала, через большее количество времени я заметила, что гидра начала сокращаться.

Вывод: При двух источниках света гидра чаще сокращается и не пытается идти ни на один из источников света.

Гидры способны различать отдельные части спектра . Проведём опыт, чтобы проверить это. Помещаем сосуд с полипами в коробку, предварительно прорезав на двух её сторонах два круга. Располагаем сосуд так, чтобы отверстия приходились на середины стенок. На одну из сторон светим диодным белым фонариком, на другую же фонариком синего цвета. Наблюдаем. Через некоторое время можно заметить, что полипы располагаются на том боку сосуда, куда светит фонарик синего цвета.

Вывод: Гидра предпочитает белому свету синий. Можно предположить, что синяя часть спектра кажется гидре более светлой, а как уже упоминалось раньше, гидра реагирует на светлое освещение.

Опытным путем определим поведение гидры в темноте. Поместим сосуд с гидрой в коробку, не пропускающую света. Через некоторое время, вынув пробирку с гидрой, увидели, что некоторые гидры переместились, а некоторые остались на своих местах, но при этом сильно сократились.

Вывод: В темноте гидры продолжают передвигаться, но медленнее, чем на свету, а некоторые виды сокращаются и остаются на своих местах.

Испытаем гидру ультрафиолетовыми лучами. Посветив на гидру в течение нескольких секунд УФ, мы заметили, что она сократилась. Посветив на гидру УФ в течение одной минуты, мы увидели, как она после небольших содроганий замерла в полной неподвижности.

Вывод: Полип не переносит облучения УФ; в течение одной минуты находясь под УФ светом, гидра погибает.

2.3.Влияние температуры на гидру обыкновенную (Hydra vulgaris )

Цель исследования: выявить поведенческие особенности гидры обыкновенной (Hydravulgaris) при изменении температуры.

Оборудование: плоский сосуд, градусник, холодильник, пипетка, горелка.

Вывод. В нагретой воде гидра погибает. Понижение температуры не вызывает попыток перемены места, животное только более вяло начинает сокращаться и вытягиваться. При дальнейшем охлаждении гидра погибает. Все химические процессы, протекающие в организме, зависят от температуры — внешней и внутренней. У гидры, неспособной поддерживать постоянную температуру тела, четко выражена зависимость от внешней температуры.

2.4. Изучение влияние гидры (Hydra ) на обитателей водной экосистемы

Цель исследования: определить влияние гидры на аквариумных животных и растения гуппи(Poecilia reticulata) , анцитрусы (Ancistrus) , улитки, элодея (Elodéa canadénsis) , неоны(Paracheirodon innesiMyers) .

Оборудование: аквариум, растения, аквариумные рыбки, гидра, улитки.

Вывод: нами выявлено, что гидра не оказывает негативного влияния на аквариумных улиток и на представителей царства растения, но вредит аквариумным рыбкам.

2.5. Способы уничтожениягидры (Hydra )

Цель исследования: изучить на практике способы уничтожения гидры (Hydra).

Оборудование: аквариум, стекло, источник света (фонарик), мультиметр, сульфат аммония, азотистый аммоний, вода, два клубка медной проволоки (без изоляции), медный купорос.

Если в аквариуме нет растений и можно убрать рыб, применяют иногда перекись водорода.

Вывод. Существуют три основных способа уничтожения гидры обыкновенной:

    при помощи электрического тока;

    окислением медной проволоки;

    с использованием химических веществ.

Самым эффективным и быстрым является способ с использованием электрического тока, так как в ходе нашего эксперимента гидра в аквариуме была уничтожена полностью. При этом растения не пострадали, а рыбу мы изолировали. Метод с использование медной проволоки и химических веществ являются менее эффективными и требуют больших затрат времени.

2.7. Условия содержания. Влияние различных сред на жизнедеятельность гидры обыкновенной (Hydra vulgaris )

Цель исследования: определить условия благоприятной среды обитания гидры обыкновенной (Hydravulgaris), выявить влияние различных сред на поведение животного.

Оборудование: аквариум, растения, уксус, соляная кислота, зелёнка.

Таблица 2. Помещение Гидры обыкновенной (Hydra vulgaris) в различные среды

ОСОБЕННОСТИ ПОВЕДЕНИЯ

При помещении в раствор сократилась до маленького комочка. Жила на протяжении 12 часов, после помещения в раствор.

Раствор уксуса не является благоприятной средой для существования организма, его можно использовать для уничтожения.

Соляной кислоты

При помещении в раствор гидра начала активно двигаться в разные стороны (в течение 1 мин.). После чего сократилась и перестала проявлять признаки жизни.

Соляная кислота является быстродействующим раствором, губительно влияющим на гидру.

Наблюдали окрашивание гидры. Отсутствие сокращений.

Малоподвижность. Была жива на протяжении 2 суток.

Спиртовой

Наблюдали сильное сокращение. В течение 30 секунд перестала подавать признаки жизни.

Спирт является одним из самых эффективных средств для уничтожения гидры.

Глицерин

Наблюдали резкое сокращение гидры в течение минуты, после чего гидра перестала подавать признаки жизни.

Глицерин является губительной средой для гидр. И может использоваться как средство уничтожения.

Вывод . Благоприятными условиями для гидры обыкновенной (Hydra vulgaris ) являются: наличие света, обилие корма, наличие кислорода, температура от +17 градусов до +25. При помещении гидры обыкновенной (Hydra vulgaris ) в различные среды отметим следующее:

    1. Раствор уксуса, соляной кислоты, спирта, глицерина не является благоприятной средой для существования животного, может использоваться как средство уничтожения.

      Зелёнка не является губительным раствором для животного, но влияет на снижение активности.

2.8. Реакция на кислород

Цель исследования: обнаружить влияние кислорода на гидру обыкновенную (Hydra vulgaris).

Оборудование: сосуд с сильно загрязнённой водой, искусственная водоросль, живая элодея, пробирки.

Вывод. Гидра - организм, который нуждается в кислороде, растворённом в чистой воде. Следовательно, животное не может существовать в грязной воде, т.к. количество кислорода в ней значительно меньше, чем в чистой. В сосуде, где находилась искусственная водоросль, почти все гидры погибли, т.к. искусственная водоросль не осуществляет процесс фотосинтеза. Во втором сосуде, где находилась живая водоросль элодея, осуществлялся процесс фотосинтеза, и гидры (Hydra) выжили. Это ещё раз доказывает, что гидры нуждаются в кислороде.

2.9. Симбионты (сожители)

Цель исследования: доказать на практике, что симбионтами зелёных гидр (Hydra viridissima) являются хлореллы.

Оборудование: микроскоп, скальпель, аквариум, стеклянная трубка, 1% раствор глицерина.

Ход работы

Симбионтами зелёных гидр являются хлореллы, одноклеточные водоросли. Таким образом, зелёный цвет полипа обеспечивается не своими клетками, а хлореллой. Известно, что яйца гидры формируются в эктодерме. Так вот, хлореллы могут проникать с током питательных веществ из энтодермы в эктодерму и «инфицировать» яйцо, окрашивая его в зелёный цвет. Чтобы доказать это, проведём опыт: поместим зелёную гидру в 1% раствор глицерина. Через некоторое время клетки энтодермы лопаются, хлореллы оказываются снаружи и вскоре гибнут. Гидра же теряет свою окраску и становится белой. При правильном уходе такая гидра может прожить довольно долго.

Следует отметить, что при погружении гидры обыкновенной (Hydra vulgaris) в раствор глицерина нами был зафиксирован летальный исход (см. п. 2.8). Однако, зелёная гидра (Hydra viridissima) выживает в таком же растворе.

2.10. Процесс питания, редукция от голода и депрессия

Цель исследования: изучить процессы питания, редукции и депрессии у гидры обыкновенной (Hydra vulgaris ).

Оборудование: аквариум с гидрой, стеклянная трубочка, циклоп, дафния, волоски мяса, сало, скальпель.

Ход работы

Наблюдение за процессом питания гидр (Hydra vulgaris ). При кормлении мельчайшими кусочками мяса гидры (Hydra vulgaris) захватывают щупальцами пищу, поднесенную на кончике заостренной палочки или скальпеля. Образцы мяса, циклопов и дафнию гидра поглощала с удовольствием, а от образца сала - отказалась. Следовательно, животное предпочитает белковую пищу (дафния, циклоп, мясо). При помещении исследуемого объекта в емкость с водой без наличия пищи и кислорода, тем самым, создав неблагоприятные условия для существования гидры, кишечнополостные впадали в депрессию.

Наблюдение. Через 3 часа произошлосокращение животного до мелких размеров,снижение активности, слабая реакция на раздражители, т.е. организм впал в депрессию. По истечению двух суток гидра (Hydra vulgaris ) приступила к самопоглощению, т.е. мы стали свидетелями процесса редукции.

Вывод . Отсутствие пищи негативно сказывается на жизнедеятельности гидры (Hydra vulgaris), сопровождается процессами, такими как депрессия и редукция.

2.11 Процесс размножения у гидры обыкновенной (Hydra vulgaris )

Цель исследования: изучить на практике процесс размножения у гидры обыкновенной (Hydra vulgaris).

Оборудование: аквариум с гидрой, стеклянная трубочка, скальпель, игла для препарирования, микроскоп.

Ход работы

В аквариум поместили одну особь гидры, создав благоприятные условия, а именно: поддерживали температуру воды в аквариуме +22 градуса Цельсия, снабжали кислородом (фильтр, водоросль элодее), обеспечивали постоянным питанием. В течение одного месяца наблюдали за развитием, размножением и изменением численности.

Наблюдение. На протяжении двух дней гидра обыкновенная(Hydra vulgaris ) активно питалась и увеличивалась в размерах. Спустя 5 дней, на ней образовалась почка — небольшой бугорок на теле. Через сутки мы наблюдали процесс отпочкования дочерней особи гидры. Таким образом, к концу эксперимента в нашем аквариуме насчитывалось 18 животных.

Вывод . При благоприятных условиях гидра обыкновенная (Hydra vulgaris) размножается бесполым способом (почкование), что способствует увеличению численности животного.

2.12 Процесс регенерации у гидры обыкновенной (Hydra vulgaris ) как будущее медицины

Цель исследования: опытным путём изучить процесс регенерации.

Оборудование: аквариум с гидрой, стеклянная трубочка, скальпель, препаровальная игла, чашка Петри.

Ход работы

Поместим одну особь гидры обыкновенной (Hydra vulgaris) в чашу Петри, затем при помощи увеличительного прибора и скальпеля отрежем одно щупальце. После препарирования поместим гидру в аквариум с благоприятными условиями и будем наблюдать за животным в течение 2 недель.

Наблюдение. После препарирования отрезанная конечность осуществляла судорожные движения, что неудивительно, т.к. гидра имеет нервную систему диффузно-узлового типа. При помещении особи в аквариум, гидра быстро освоилась и стала питаться. Спустя сутки у гидры появилась новое щупальце, следовательно, животное обладает способностью восстанавливать свои конечности, значит, осуществляется регенерация.

В продолжение опыта, разрежем гидру обыкновенную (Hydra vulgaris) на три части: голова, нога, щупальце. Для исключения ошибки, поместим каждую часть в отдельную чашу Петри. В течение двух суток осуществляли наблюдение за каждой пробой.

Наблюдение. Первые шесть минут отрезанное щупальце гидры подавало признаки жизни, но в дальнейшем мы этого больше не наблюдали. Спустя сутки часть тела гидры с трудом было различимо под микроскопом. Следовательно, из щупальца гидры не может образоваться новая особь и достроить (при помощи регенерации) другие части тела. В чаше Петри, содержащей голову, происходил процесс регенерации клеток. Организм восстановился. Практически одновременно из головы были достроены недостающие части тела (нога и щупальца). Значит, голова осуществляет процесс регенерации и может достроить свой организм полностью. Из ноги гидры так же был достроен весь организм, а именно голова и щупальца.

Вывод . Следовательно, из одной особи гидры, разрезанной на три части (голова, нога, щупальце), можно получить два полноценных организма.

Можно предположить, что за способность регенерации клеток у гидры отвечают i-клетки, которые выполняют функции практически стволовых клеток. Они могут воссоздавать недостающие для полноценного существования организма клетки. Именно i-клетки помогли создать щупальце, голову и ногу. Способствовали увеличению численности особей неестественным путём.

При дальнейшем доскональном изучении i-клеток, а так же их способностей, человечество сможет осуществить прорыв в биологии, косметологии и медицине. Они помогут человеку приблизиться к бессмертию. При вживлении аналога i-клеток в живой организм, станет возможным воссоздание недостающих частей (органов) тела. Человечество сможет предотвратить смерть клеток в организме. При создании самовосстанавливающихся органов с использованием аналога i-клеток, мы сможем решить проблему инвалидности в мире.

Приложение

ЗАКЛЮЧЕНИЕ

В ходе ряда экспериментов было установлено, что Гидра обыкновенная обитает на территории Витебской области. Главным условием обитания гидры является обилие корма. Гидра не переносит облучения ультрафиолетового света. В течение одной минуты находясь под облучением УФ, она погибает. Все химические процессы, протекающие в организме гидры, зависят от температуры — внешней и внутренней. При помещении гидры обыкновенной (Hydra vulgaris) в различные среды наблюдаем, что гидра может выжить не в любой среде. Недостаток кислорода гидры могут выносить довольно долго: часами и даже днями, но затем они гибнут. Зелёные гидры состоят в симбиозе с хлореллами, при этом не нанося друг другу вреда. Гидра предпочитает белковое питание (дафния, циклоп, мясо), отсутствие пищи негативно сказывается на жизнедеятельности гидры, сопровождается процессами, такими как депрессия и редукция.

На практике доказано, что из щупальца гидры не может образоваться новая особь и достроить другие части тела. Голова осуществляет процесс регенерации и может достроить свой организм полностью, нога гидры так же достраивает весь организм. Следовательно, из одной особи гидры, разрезанной на три части (голова, нога, щупальце) можно получить два полноценных организма. За способность регенерации клеток у гидры отвечают i-клетки, которые выполняют функции практически стволовых клеток. Они могут воссоздавать недостающие для полноценного существования организма клетки. Именно i-―клетки помогли создать щупальце, голову и ногу. Способствовали увеличению численности особей неестественным путём. При дальнейшем доскональном изучении i-клеток, а так же их способностей, человечество сможет осуществить прорыв в биологии, косметологии и медицине. Они помогут человеку приблизиться к бессмертию. При вживлении аналога i-клеток в живой организм, станет возможным воссоздание недостающих частей (органов) тела. Человечество сможет предотвратить смерть клеток в организме. При создании самовосстанавливающихся органов с использованием аналога i-клеток, мы сможем решить проблему инвалидности в мире.

Список литературы

    Биология в школе Глаголев, С. М. (кандидат биологических наук). Стволовые клетки [Текст] / СМ. Глаголев // Биология в школе. - 2011. - N 7. - С. 3-13. - ^QI j Библиогр.: с. 13 (10 назв.). - 2 рис., 2 фот. В статье речь идет о стволовых клетках, об их изучении и практическом использованием достижений эмбриологии.

    Быкова, Н. Звездные параллели / Наталья Быкова // Лицейское и гимназическое образование. - 2009. - N 5. - С. 86-93. В подборке материалов автор размышляет о звездах, Вселенной и приводит некоторые фактические данные.

    Бюллетень Влияние аналогов пептидного экспериментальной морфогена гидры на ДНК-синтетические биологии и процессы в миокарде новорожденных медицины белых крыс[Текст] / Е. Н. Сазонова [и др. ]// Бюллетень экспериментальной биологии и медицины. - 2011. - Т. 152, N 9. - С. 272-274. - Библиогр.: с. 274 (14 назв.). - 1 табл. С помощью авторадиографии с {3}Н-тимидином исследована ДНК-синтетическая активность клеток миокарда новорожденных белых крыс после внутрибрюшинного введения пептидного морфогена гидры и его аналогов. Введение пептидного морфогена гидры оказывало стимулирующее влияние на пролиферативную активность в миокарде. Аналогичный эффект вызывали укороченные аналоги пептидного морфогена гидры - пептиды 6С и ЗС. Введение аргининсодержащего аналога пептидного морфогена гидры приводило к достоверному снижению числа ДНК-синтезирующих ядер в желудочковом миокарде новорожденных белых крыс. Обсуждается роль структуры пептидной молекулы в реализации морфогенетических эффектов пептидного морфогена гидры.

    Взаимодействие живой системы с электромагнитным полем / Р. Р. Асланян [и др. ]// Вестник Московского университета. Сер. 16, Биология. - 2009. - N 4. - С. 20-23. -Библиогр.: с. 23 (16 назв.). - 2 рис. Об изучении влияния ЭМП (50 Гц) на одноклеточные зеленые водоросли Dunaliella tertioleeta, Tetraselmis viridis и пресноводные гидры Hydra oligactis.

    Гидра - родственница медуз и кораллов.

    Иванова-Казас, О. М. (д-р биол. наук; Санкт-Петербург) Перевоплощения Лернейской Гидры / О. М. Иванова-Казас // Природа. - 2010. - N 4. - С. 58-61. -Библиогр.: с. 61 (6 назв.). - 3 рис. Об эволюции Лернейской Гидры в мифологии и ее реальном прототипе в природе. Иофф, Н. А. Курс эмбриологии 1962 беспозвоночных / под ред. Л. В. Белоусова. Москва: Высшая школа, 1962. - 266 с. : ил.

    история "одного рода пресноводных полипов с руками в форме рогов" / В. В. Малахов// Природа. - 2004. - N 7. - С. 90-91. - Рец. на кн.: Степаньянц С. Д., Кузнецов В. Г., Анохин Б. В. Гидра: от Абраама Трамбле до наших дней / С. Д. Степаньянц, В. Г. Кузнецов, Б. В. Анохин.- М.; СПб: Товарищество научных изданий КМК, 2003 (Разнообразие животных. Вып. 1).

    Канаев, И. И. Гидра: очерки по биологии 1952 пресноводных полипов. - Москва; Ленинград: Изд-во АН СССР, 1952. - 370 с.

    Малахов, В. В. (член-корр. РАН). Новая

    Овчинникова, Е. Щит против водяной гидры / Екатерина Овчинникова // Идеи вашего дома. - 2007. - N 7. - С. 182-1 88. Характеристика рулонных гидроизоляционных материалов.

    С. Д. Степаньянц, В. Г. Кузнецова и Б.А. Анохин «Гидра от Абраама Трамбле до наших дней»;

    Токарева, Н.А. Лаборатория лернейской гидры / Токарева Н.А. // Экология и жизнь. -2002. -N6.-C.68-76.

    Фролов, Ю. (биолог). Лернейское чудо / Ю. Фролов // Наука и жизнь. - 2008. - N 2. - С. 81.-1 фот.

    Хохлов, А. Н. О бессмертной гидре. Опять[Текст] / А. Н. Хохлов // Вестник Московского университета. Сер. 16, Биология.-2014.-№ 4.-С. 15-19.-Библиогр.: с. 18-19 (44 назв.). Кратко рассматривается многолетняя история представлений о самом известном "бессмертном" (нестареющем) организме -пресноводной гидре, которая на протяжении многих лет привлекала внимание ученых, занимающихся проблемами старения и долголетия. Отмечается возобновление в последние годы интереса к изучению тонких механизмов, обеспечивающих практически полное отсутствие у этого полипа старения. Подчеркивается, что в основе "бессмертия" гидры лежит неограниченная способность ее стволовых клеток к самообновлению.

    Шалапёнок, Е. С.Беспозвоночные 2012 животные водных и наземных экосистем Беларуси: пособие для студентов биол. фак.-Минск: БГУ, 2012.-212 с. : ил. - Библиогр.: с. 194-195. - Указ. рус. назв. животных: с. 196-202. - Указ. латин. назв. животных: с. 203-210.



Понравилась статья? Поделитесь ей
Наверх