Гематоэнцефалический барьер: что это такое. Гематоэнцефалический барьер его строение и значение

Происхождение мозга Савельев Сергей Вячеславович

§ 7. Гематоэнцефалический барьер

Нервная ткань - это объединение специализированных клеток, которые воспринимают, обрабатывают, хранят и используют информацию о внешней среде и внутреннем состоянии организма. Этим функциям подчинено строение нервных клеток - нейронов. Нервные клетки имеют особенности, которые отличают их от других клеток организма (рис. I-9). Нейроны неодинаковы. Они различаются по размеру, форме ветвления дендритов и аксонов, выделению различных химических веществ и физиологической активности.

Рис. I-9. Строение нейронов и глиальных клеток.

а - импрегнированные нейроны коры головного мозга человека. При такой окраске виден примерно 1 нейрон из 1000, что позволяет рассмотреть его отростки; б - глиальные клетки из мозга человека; в - строение нейрона и его аксона, закрытого глиальными клетками.

Нейроны - характерные структурные элементы нервной системы объединены в сети и в специализированные структуры ганглии или мозг, а их отростки образуют периферические нервы.

В нервных клетках - нейронах - обычно можно выделить клеточное тело, дендриты и аксон (см. рис. I-9). Тело содержит ядро и биохимический аппарат синтеза молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет округлую, веретеновидную или пирамидальную форму. Дендриты представляют собой тонкие отростки, которые многократно ветвятся в непосредственной близости от тела клетки. Вокруг него образуется ветвистое дерево. Дендриты формируют ту основную физическую поверхность, на которую поступают идущие к данному нейрону сигналы. Аксоны распространяются далеко от тела клетки. Их длина варьирует от 1 мм до 1,5 м, что позволяет аксонам выполнять функции линий связи между телом клетки и далеко расположенным органом-мишенью или отделом мозга. По аксону проходят сигналы, генерируемые в теле данной клетки. Аксон отличается от дендритов как по строению, так и по свойствам наружной мембраны. Большинство аксонов длиннее и тоньше дендритов и имеют отличный от них характер ветвления. Отростки дендритов в основном группируются вокруг клеточного тела, тогда как отростки аксонов располагаются на конце волокна, в том месте, где аксон взаимодействует с другими нейронами или органами-мишенями.

Кроме нейронов, в нервной системе есть и другие специализированные клетки, которые не выполняют перечисленных нервных функций. Это клетки глии. Глиальные клетки не могут генерировать или обрабатывать информационные сигналы. В их задачу входят снабжение нейронов соединениями, необходимыми для нормального метаболизма, отведение продуктов катаболизма и обеспечение барьерных функций между мозгом и кровеносной системой. Кроме этого, глиальные клетки выполняют функции макрофагов, лимфоцитов и других клеток кровеносной и лимфоидной систем. Нейроглия выполняет механическую функцию и изолирует электрохимически активные волокна отдельных нервных волокон внутри мозга. Оболочки вокруг отростков нейронов состоят из клеток нейроглии, что позволяет стабилизировать ионную среду и увеличивать скорость проведения нервного сигнала (рис. I-10; I-11).

В головном мозге изолирующие функции выполняет олигодендроглия. Она происходит из нейроэктодермы, но отличается от нейронов тем, что не генерирует никаких сигналов, а специализируется на изолирующих функциях. Каждая клетка олигодендроглии охватывает сразу несколько отростков нейронов (см. рис. I-9). Олигодендроглия окружает отростки нейронов, тогда как другие глиальные клетки изолируют тела нейронов.

Рис. I-10. Основные компоненты гематоэнцефалического барьера головного мозга и периферической нервной системы.

Головной мозг изолирован от кровеносной системы трофическими глиальными клетками (зелёные), олигодендроглией и шванновскими клетками. Спинномозговая жидкость фильтруется через эпендимные клетки нейрального происхождения.

Глиальные клетки выполняют несколько функций. Одна из барьерных функций - это изоляция нейронов и их отростков от соприкосновения с кровеносным руслом. Между кровеносными капиллярами и нейронами находятся изолирующие клетки глии. В их функции входят как поддержание целостности гематоэнцефалического барьера, так и питание нейронов. Через эти клетки проходит основной поток веществ и кислорода, необходимого для сохранения активности мозга. Этот глиальный барьер непроницаем для большинства органических соединений. Их перенос к нейронам осуществляется под контролем рецепторных белков мембран глиальных клеток и нейронов. Такой активный фильтр препятствует случайному движению любых соединений как в мозг, так и из него. Через глиальные клетки осуществляется перенос веществ, подвергшихся катаболизму внутри нейронов, поэтому поток соединений через глиальную часть гематоэнцефалического барьера двунаправленный. В мозг поступают кислород и питательные вещества, а из него отводятся продукты катаболизма. Этот поток крайне интенсивен, поскольку у млекопитающих может достигать 25 % общего метаболизма организма. Столь высокий уровень обмена предусматривает высокую проницаемость барьера при невероятно эффективной избирательности. Эти функции структурно обеспечены соотношением количества глиальных клеток и нейронов. Как правило, каждый нейрон обслуживает примерно 15–50 глиальных клеток, которые и обеспечивают необходимый и избирательный поток компонентов, необходимых для поддержания жизни нервной клетки.

Надо отметить, что изолированность нервной системы двунаправленная. Глиальные клетки препятствуют попаданию продуктов, появляющихся при гибели нейронов, и в мозг, и в кровеносную систему. После гибели нейрона такие продукты формируют вокруг него своеобразный саркофаг из своих тел. Это препятствует попаданию продуктов аутолиза в межклеточное пространство. После окончательного распада нейрона остаётся только контур из тел глиальных клеток, формировавших саркофаг, а затем исчезает и он. Появляются своеобразные «тени» - пустые межклеточные участки, напоминающие форму погибших клеток. Гематоэнцефалический барьер мозга построен не только из глиальные клеток. Его функции выполняют и эпендимные клетки, выстилающие поверхность желудочков и сосудистое сплетение (см. рис. I-10; I-11). Эти клетки в зоне сосудистого сплетения образуют плотный слой, который препятствует проникновению через межклеточное пространство любых веществ и соединений.

Рис. I-11. Срезы мозга и сосудистого сплетения (стрелки), расположенного в желудочках мозга различных позвоночных. Микрофотографии.

Спинномозговая жидкость фильтруется через эпендимные клетки нейрального происхождения. При низком кровотоке проницаемость стенок сосудистого сплетения невысока, но его площадь очень большая. У млекопитающих при высоком давлении крови сосудистое сплетение имеет крайне небольшие размеры.

Через слой этих клеток в сосудистом сплетении головного мозга происходит ультрафильтрация воды и ионов кальция, натрия, хлора, марганца, калия и магния. Вода и растворы электролитов извлекаются из плазмы крови. В результате кровь лишается части воды и повышает свою вязкость. Накапливающийся в желудочках фильтрат обычно называют спинномозговой жидкостью. Она проходит через желудочки, стенки мозга и спускается по дорсальной поверхности вдоль спинного мозга, затем поднимается вверх и собирается под мозговыми оболочками в зонах особых расширений. Из них спинномозговая жидкость поступает в специальные зоны мозговых оболочек, которые называются пахионовыми грануляциями. Через грануляции спинномозговая жидкость возвращается в венозное русло. Надо отметить, что спинномозговая жидкость поступает в головной мозг активно, поскольку артериальное давление в приносящих мозговых сосудах довольно велико, а возвращается в венозное русло уже пассивно - по градиенту концентрации. Осмотические силы, действующие в момент извлечения спинномозговой жидкости из-под оболочек мозга, не всегда могут уравновесить непрерывный приток этой жидкости через сосудистые сплетения желудочков. Это приводит к динамическим нарушениям и повышению давления жидкости в желудочках мозга.

Спинномозговая жидкость меняется в головном мозге с высокой скоростью. У человека, исследованного лучше других животных, при пассивном образе жизни вся вода организма проходит через сосудистое сплетение за 10–12 ч, а при физической нагрузке - за 7 ч. Этот достаточно большой поток жидкости обеспечивает нейроны одним из важнейших факторов жизнедеятельности - растворами электролитов. Они необходимы при кодировке, генерации и передаче электрохимических сигналов между отдельными нервными клетками. Нарушения электролитного баланса мозга ставят больше проблем, чем недостаток питания нервных клеток. Для контроля за электролитным балансом мозга в эволюции сложилась специальная система, начинающаяся с осморецепторов, расположенных в прижелудочковых стенках промежуточного мозга. Эти клетки реагируют на изменение осмотического баланса в спинномозговой жидкости. Они вызывают фантомные ощущения сухости во рту, стимулируют выработку антидиуретического гормона, стимулирующего адсорбцию воды в почках, и запускают питьевое поведение. Возникновение этого сложного механизма автономной регуляции осмотического баланса только подчёркивает его функциональную важность для мозга. В этой системе снабжения мозга растворами электролитов нет никаких прямых контактов между нейронами и клетками иммунной системы. Граница непроницаема для органических соединений всего организма.

Следует отметить, что у позвоночных сосудистое сплетение различается по размерам (см. рис. I-11). У рыб и амфибий оно выглядит непропорционально большим, а у млекопитающих - чрезвычайно маленьким. В контексте рассуждений о скорости обмена спинномозговой жидкости такие различия кажутся необъяснимыми (Савельев, 2001). На самом деле причины таких морфологических различий вполне понятны. Скорость кровотока в сосудистом сплетении у птиц и млекопитающих намного выше, чем у рептилий, амфибий, хрящевых и костистых рыб, поэтому достаточный уровень обмена спинномозговой жидкости у холоднокровных обеспечивается большей площадью поверхности сосудистого сплетения. Отношение площадь поверхности сосудистого сплетения/объём мозга у низших позвоночных в несколько раз больше, чем у птиц или млекопитающих. Известны и «гипертрофированные» исключения из этого правила, например у бурого протоптера (Protopterus annectens) сосудистое сплетение закрывает собой почти всю дорсальную поверхность мозга.

Таким образом, изолированность и высокий уровень метаболизма нейронов головного мозга обеспечены двумя относительно независимыми системами. Одна из них представляет собой глиальные клетки, обеспечивающие метаболизм питательных веществ и кислорода, другая - эпендимные клетки сосудистого сплетения, фильтрующие через своё тело поток воды и электролитов из плазмы крови. Процессы разделены, поскольку даже при значительном недостатке пищи электрохимическая активность мозга поддерживается независимо. Это происходит благодаря эффективному и относительно независимому обмену спинномозговой жидкости и электролитов нервной системы (см. рис I-8; I-10; I-11).

Дополнительное внимание следует уделить изоляции периферической части нервной системы. Она является таким же забарьерным органом, как головной и спинной мозг. Все периферические нервы, ганглии, рецепторные и эффекторные окончания изолированы от иммунной системы организма. Нервы и ганглии окружает оболочка из особых клеток, которые называются шванновскими (см. рис. I-9; I-10). У позвоночных они происходят из клеток нервного гребня, как и большая часть периферической нервной системы. Обычный размер этих клеток, окружающих аксоны и дендриты нейронов, составляет около 1 мм. Шванновские клетки формируют изоляционный слой вокруг отростка нейрона при помощи своей мембраны, которая может образовывать множество витков. В сечении эта структура напоминает плотный рулет (рис. I-12). В случае особо скоростного проведения сигналов миелинизация может стать «матрёшечной»: внутри общей миелиновой оболочки может лежать высокоскоростной нерв, окружённый собственной многослойной миелиновой оболочкой. Обычно скорость проведения сигналов по таким нервам более 130 м/с. Зоны контактов отдельных шванновских клеток называются перехватами Ранвье.

Рис. I-12. Оболочки отростков нервных клеток (а, в) и синапсов (б).

Электронные фотографии. Схема основных типов синаптических контактов нервных клеток (г). Синапсы и контакты увеличены.

Оболочки отростков нервных клеток изолируют зоны проведения сигналов и увеличивают скорость их передачи. Синапсы обозначены зелёными стрелками.

В этих зонах часто располагаются складки мембраны аксонов, которые выходят наружу и формируют эффективно работающие соединения, синапсы. Места контакта нейронов с органами-мишенями также изолированы специализированными гомологами шванновских клеток. Отдельно необходимо пояснить ситуацию с миелинизированными и немиелинизированными (безмиелиновыми) волокнами. Под этим названием обычно понимают волокна, «лишённые» оболочек. Это название укрепилось в учебниках с конца XIX в., но не отражает реальной ситуации. Безмиелиновыми нервными волокнами микроскописты, использовавшие световой микроскоп, считали волокна без явных следов оболочек или миелина. Однако с помощью электронного микроскопа показано, что даже обонятельные нервы обладают небольшой оболочкой, состоящей из шванновских клеток.

Обычно одна шванновская клетка делает 1–2 оборота вокруг группы обонятельных волокон. Тем не менее нервные волокна изолированы на всём протяжении. Вполне понятно, что обновляющиеся обонятельные клетки не могут иметь развитой изолирующей оболочки, хотя в упрощённом виде она всегда присутствует. В периферической нервной системе нет неизолированных участков ганглиев, нейронов или их отростков и концевых разветвлений. Различия сводятся к степени миелинизации, а не к разным принципам строения. Следовательно, в головном и спинном мозге барьерные функции выполняют глиальные клетки, система сосудистых сплетений и олигодендроглия, в периферической нервной системе - шванновские клетки. Нервная система изолирована от остального организма, а нарушение этого барьера приводит к тяжелым аутоиммунным заболеваниям и гибели животного.

Взаимодействия между клетками

Нервные клетки взаимодействуют между собой и с остальными тканями организма. Обычно это прямой контакт. Нервное окончание получает информацию или передаёт её клеткам органа, но это не обязательно. Нервные клетки могут синтезировать гормоны, нейропептиды или другие соединения. Они выделяются в кровеносное русло и распространяются по гуморальным законам. Гормоны используются как генерализованные носители информации для управления всем организмом. Иногда они специфичны только для определённого органа-мишени, но в целом гормональная регуляция очень неспецифична и определяет только общую тенденцию в поведении. Выброс половых гормонов происходит под влиянием нервной системы, но их присутствие в организме в конечном счёте подчиняет себе и работу мозга. Мозг «вызывает их к жизни» и сам подчиняется им. Так, в период гона у копытных стратегически меняется поведенческая активность. Половые гормоны оказывают столь заметное влияние на мозг, что все другие формы поведения отходят на второй план или становятся подчинёнными. Достаточно попробовать плоды блестящей дрессировки любимого домашнего пса в присутствии течной суки.

В человеческом (приматном) сообществе действуют похожие законы. Весенняя гормональная активность преждевременно снимает шапки у мальчиков и оголяет коленки у девочек. Как правило, никакие «негормональные» доводы не действуют. Гормональная подчинённость нервной системы - это интеллектуальное горе человечества и гарантия его воспроизведения как биологического вида.

Размножаться, драться и добывать пищу лучше с использованием гормональной поддержки организма. Древние викинги грызли край щита, доводя до нужного уровень адреналина перед боем. Словесная перепалка на кухне вызывает выброс мобилизирующих гормонов, а через 10 мин становится ясно, как много веских слов и аргументов ещё не высказано. Следовательно, гормональные межклеточные взаимодействия, запускаемые нервной системой, хороши, но инертны, неадаптивны и не поддаются динамическому контролю. Трудно представить, что, собираясь отчаянно спорить, человек будет колоть себя шилом для гормональной мобилизации. Ещё менее вероятен волк, грызущий свой хвост для охотничьего возбуждения.

Для многих других видов гормональный контроль поведения позволяет просто статистически решать проблемы выживания. Для животных с выраженными генетическими программами поведения гормональная регуляция является одним из средств реализации врождённых форм поведения. Это свойственно беспозвоночным, первичноводным позвоночным, амфибиям, значительной части рептилий, птиц и специализированных млекопитающих. Такая распространённость генетико-гормональных форм поведения показывает их эффективность, но основана на вероятностном принципе. У таких видов обычно достаточно много потомков, чтобы хотя бы один из них смог выжить, просто перебирая стандартный набор поведенческих программ.

Гематоэнцефалический барьер (ГЭБ) — это физиологический барьер, отделяющую кровь от цереброспинальной жидкости и внутренней среды центральной нервной системы, для того чтобы сохранить постоянство последнего. Концентрация многих веществ, таких как аминокислоты, гормоны, ионы металлов, в крови постоянно меняется особенно резко после приема пищи или физических нагрузок. Большинство органов могут терпеть такие изменения, однако на функционирование ЦНС они могли бы иметь пагубный характер приводя к хаотическому генерирования нервных импульсов отдельными нейронами, поскольку многие из веществ крови (например аминокислота глицин и гормон норадреналин) выполняют функцию нейромедиаторов, а некоторые ионы (например K +) могут изменять возбудимость нервных клеток.

Структура гематоэнцефалического барьера

В создании гематоэнцефалического барьера задействованы следующие структуры:

  • Эндотелий капилляров, клетки которого надежно и близко соединены между собой с помощью плотных контактов, в результате чего капилляры ЦНС менее проницаемые во всем теле. Эта составляющая является важнейшим в создании ГЭБ.
  • Сравнительно толстая базальная мембрана, окружающая снаружи каждый капилляр.
  • Цибулиноподибни «ножки» астроцитов, которые плотно облепляют капилляры. Хотя эти структуры делают вклад в создание ГЭБ, их роль заключается не столько в непосредственном обеспечении непроницаемости, сколько в том, что они стимулируют эндотелиоциты к образованию плотных контактов.

Проницаемость гематоэнцефалического барьера

Гематоэнцефалический барьер имеет избирательную проницаемость: из него путем облегченной диффузии могут транспортироваться вещества необходимы для питания нервной системы: глюкоза (при участии транспортера GLUT 1), незаменимые аминокислоты и некоторые электролиты. Липиды (жиры, жирные кислоты) и низкомолекулярные жирорастворимые вещества (кислород, углекислый газ, этанол, никотин, анестетики) могут пассивно диффундировать через мембраны ГЭБ. Такие вещества как белки, большинство токсинов и продуктов метаболизма не могут его преодолеть, а низкомолекулярные заменимые аминокислоты и ионы калия даже активно скачиваются с мозга в кровь. В частности для поддержания низкой концентрации K + используется уникальный Na + -K + -2Cl — котранспортер.

Прохождение веществ в обратном направлении — с мозга в кровь — контролируется значительно меньше, потому что цереброспинальная вещество оттекает в венозное русло через ворсинки паутинной оболочки.

Распределение гематоэнцефалического барьера

ГЭБ не одинаков в разных участках центральной нервной системы, например в соединениях сплетениях (лат. Plexus choroideus) желудочков мозга капилляры хорошо пропускающие, однако они окружены клетками эпендимой, которые уже соединены между собой плотными контактами. Иногда барьер в соединениях сплетениях отличают от гематоэнцефалического и называют гемато-спинномозковоридинним, хотя они имеют много общего.

Некоторым функциональным структурам мозга гематоэнцефалический барьер препятствует выполнять их работу, поэтому они его лишены, эти участки объединены под названием навколошлуночкови органы, поскольку расположены вблизи желудочков мозга. Например центр рвоты у продолговатом мозге у четвертого желудочка, должен следить за наличием в крови ядовитых веществ. А гипоталамус, что находится на дне третьего желудочка, должен постоянно чувствовать химический состав крови чтобы регулировать водно-солевой баланс, температуру тела и многие другие физиологических показателей. В частности он проявляет активность в ответ на действие таких белков крови как ангиотензин II, что стимулирует питья, и интерлейкин-1, который вызывает лихорадку.

Гематоэнцефалический барьер также недоразвитый у новорожденных и младенцев, из-за чего они особенно чувствительны к токсическим веществам.

Клиническое значение

Способность определенных препаратов проникать через ГЭБ является важной характеристикой их фармакокинетики. В частности, ее важно учитывать при лечении органов нервной системы. Например некоторые антибиотики фактически не способны проникать в ткани головного и спинного мозга, тогда как другие делают это достаточно легко. ГЭБ задерживает амины дофамин и серотонин, но пропускает их кислотные предшественники — L-ДОФА и 5-гидрокситриптофан.

Важным клиническим наблюдением является то, что гематоэнцефалический барьер нарушается в зонах опухолевого роста — вновь капилляры не имеют нормальных контактов с астроцитами. Это помогает в диагностике новообразований в ЦНС: если использовать альбумин меченый 131 I, он будет проникать в первую очередь в ткань опухоли, благодаря чему ее можно будет локализовать.

Нейроглию подразделяют на макроглию и микроглию. Клетки макроглии – астроциты, олигодендроциты и эпендимоциты выполняют в нервной системе важные функции.

Олигодендроциты образуют мякотные (миелиновые) оболочки вокруг нервных волокон (рис. 59). Олигодендроциты также окружают со всех сторон нейроны и обеспечивают для них питание и выделение.

Астроциты осуществляют опорную функцию, заполняя пространство между нейронами, а также замещая погибшие нервные клетки. На нейроне обычно оканчиваются аксоны многих других нервных клеток, и все они изолированы друг от друга астроцитами. Астроциты очень часто заканчиваются своими отростками на кровеносных сосудах, образуя так называемые сосудистые ножки (рис. 60) и участвуя в образовании гематоэнцефалического барьера. Астроциты также способны уничтожать микробы и вредные вещества.

Эпендимоциты – это эпителиальные клетки, выстилающие полости желудочков мозга. Один отросток эпендимоцита доходит до кровеносного сосуда. Полагают, что эпендимоциты являются посредниками между кровеносным сосудом и полостью мозговых желудочков, заполненных спинномозговой жидкостью.

Источником клеток микроглии служат мозговая оболочка, стенка кровеносных сосудов и сосудистая оболочка желудочков мозга. Клетки микроглии способны передвигаться. Они осуществляют захват и последующую переработку попавших в организм микробов, инородных веществ, а также отмерших элементов мозга. Скопления клеток микроглии часто наблюдаются около участков поврежденного мозгового вещества.

Большую роль клетки нейроглии играют в осуществлении барьера между кровью и мозгом, так называемого гематоэнцефалического барьера . Не все вещества, попадающие в кровь, могут проникнуть в мозг. Они задерживаются гематоэнцефалическим барьером, который предохраняет мозг от поступления из крови различных вредных для него веществ, а также многих бактерий. В выполнении барьерных функций наряду с другими структурными образованиями участвуют астроциты. Сосудистые ножки астроцитов со всех сторон окружают кровеносный капилляр, плотно соединяясь между собой.

Если по каким-то причинам гематоэнцефалический барьер нарушается, то микробы или ненужные вещества могут проникнуть в мозг и в первую очередь в цереброспинальную жидкость. Цереброспинальная, или спинномозговая жидкость , или ликвор – это внутренняя среда мозга, поддерживающая его солевой состав, участвующая в питании мозговых клеток и удалении из них продуктов распада. Она также поддерживает внутричерепное давление, является гидравлической подушкой мозга, предохраняющей нервные клетки от повреждений при ходьбе, беге, прыжках и других движениях.


Цереброспинальная жидкость заполняет желудочки головного мозга, центральный канал спинного мозга, пространства между оболочками, как головного, так и спинного мозга. Она постоянно циркулирует. Нарушение ее циркуляции ведет к расстройствам деятельности ЦНС. Количество цереброспинальной жидкости у взрослого человека равно 120–150 мл. Главным местом ее образования являются сосудистые сплетения желудочков мозга. Спинномозговая жидкость обновляется 3–7 раз в сутки. В ней отсутствуют ферменты и иммунные тела, содержится небольшое количество лимфоцитов. В ней меньше, чем в крови, белков и примерно такое же, как в крови, содержание минеральных солей.

Многие вещества, находящиеся в крови или искусственно вводимые в кровь, совсем не попадают в спинномозговую жидкость и соответственно в клетки мозга. Гематоэнцефалический барьер практически непроницаем для многих биологически активных веществ крови: адреналина, ацетилхолина, серотонина, гамма-аминомасляной кислоты, инсулина, тироксина и др. Также он мало проницаем для многих антибиотиков, например пенициллина, тетрациклина, стрептомицина. Поэтому некоторые лекарства, например многие антибиотики, для лечения нейронов спинного или головного мозга приходится вводить непосредственно в цереброспинальную жидкость, прокалывая оболочки спинного мозга. Вместе с тем, такие вещества как алкоголь, хлороформ, морфий, столбнячный токсин легко проникают через гематоэнцефалический барьер в цереброспинальную жидкость и быстро действуют на нейроны мозга.

Проницаемость гематоэнцефалического барьера регулируется центральной нервной системой. Благодаря этому мозг может в определенной мере сам регулировать собственное функциональное состояние. Кроме того, в отдельных областях головного мозга гематоэнцефалический барьер слабо выражен. В этих областях капилляры не полностью окружены астроцитами и нейроны могут непосредственно контактировать с капиллярами. Гематоэнцефалический барьер слабо выражен в гипоталамусе, эпифизе, нейрогипофизе, на границе продолговатого и спинного мозга. Высокая проницаемость барьера в этих областях мозга позволяет ЦНС получить информацию о составе крови и спинномозговой жидкости, а также обеспечить попадание в кровь секретируемых в ЦНС нейрогормонов.

5.6. Мембранные потенциалы нервных клеток

Проникновение антимикробных средств через гематоэнцефалический барьер

Хорошо проникают

Хорошо проникают только при воспалении

Плохо проникают даже при воспалении

Не проникают

Хлорамфеникол

Сульфаниламиды: "Котримоксазол"

Нитроимидазолы: метронидазол

Противотуберкулезные препараты: изониазид, рифампицин, этамбутол и др.

Противогрибковые препараты: флуконазол

Пенициллины: ампициллин, амоксициллин, пенициллин и др.

Цефалоспорины III, IV поколений

Карбапенемы: имипенем

Аминогликозиды: амикацин, канамицин

Тетрациклины: доксициклин, тетрациклин

Гликопептиды: ванкомицин

Фторхинолоны: офлоксацин, пефлоксацин

Пенициллины: карбанициллин

Аминогликозиды: гентамицин, нетилмицин, стрептомицин

Макролиды

Фторхинолоны: норфлоксацин

Противогрибковые препараты: кетоконазол

Линкозамиды: клиндамицин, линкомицин

Полимиксины: полимиксин В

Противогрибковые препараты: амфотерицин В

При инфекциях ЦНС эффективность лечения принципиально зависит от степени проникновения антимикробного средства через ГЭБ и уровня его концентрации в спинномозговой жидкости. У здоровых людей большинство антимикробных средств плохо проникает через ГЭБ, но при воспалении мозговых оболочек степень прохождения для многих лекарственных средств увеличивается.

2.Препараты сульфаниламидов пролонгированного действия.

К препаратам длительного действия относятся сульфапиридазин (сульфа-метоксипиридазин, спофадазин) и сульфадиметоксин (мадрибон, мадроксин). Они хорошо всасываются из желудочно-кишечного тракта, но медленно выво­дятся. Максимальные концентрации их в плазме крови определяются через 3-6 ч.

Длительное сохранение в организме бактериостатических концентраций пре­паратов, по-видимому, зависит от их эффективной реабсорбции в почках. Может иметь значение и выраженная степень связывания с белками плазмы крови (на­пример, для сульфапиридазина она соответствует примерно 85%).

Таким образом, при использовании препаратов длительного действия в орга­низме создаются стабильные концентрации вещества. Это является несомнен­ным преимуществом препаратов при антибактериальной терапии. Однако если возникают побочные явления, продолжительный эффект играет отрицательную роль, так как при вынужденной отмене вещества должно пройти несколько дней, прежде чем закончится его действие.

Следует учитывать также, что концентрация сулфапиридазина и сульфадиметоксина в спинномозговой жидкости невелика (5-10% от концентрации в плазме крови). Этим они отличаются от сульфаниламидов средней продолжительности действия, которые накапливаются вликворе в довольно больших количествах (50-80% от концентрации в плазме).

Назначают сульфапиридазин и сульфадиметоксин 1-2 раза в сутки.

Препаратом сверхдлительного действия является сульфален (келфизин, сульфаметоксипиразин), который в бактериостатических концентрациях задержива­ется в организме до 1 нед.

Препараты длительного действия наиболее целесообразно использовать при хронических инфекциях и для профилактики инфекций (например, в послеопе­рационном периоде).

Гистогематический барьер - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих потоки веществ между кровью и органами.

Гистогематические барьеры участвуют в поддержании гомеостаза организма и отдельных органов. Благодаря наличию гистогематических барьеров каждый орган живет в своей особой среде, которая может значительно отличаться от по составу отдельных ингредиентов. Особенно мощные барьеры имеются между и мозгом, кровью и тканью половых желез, кровью и влагой камер глаза, кровью матери и плода.

Гистогематические барьеры различных органов имеют как различия, так и ряд общих черт строения. Непосредственный контакт с кровью во всех органах имеет слой барьера, образованный эндотелием кровеносных капилляров. Кроме того, структурами ГГБ являются базальная мембрана (средний слой) и адвентициальные клетки органов и тканей (наружный слой). Гистогематические барьеры, изменяя свою проницаемость для различных веществ, могут ограничивать или же облегчать их доставку к органу. Для ряда токсичных веществ они непроницаемы, в чем проявляется их защитная функция.

Важнейшие механизмы, обеспечивающие функционирование гистогематических барьеров, далее рассматриваются на примере гематоэнцефалического барьера, наличие и свойства которого врачу особенно часто приходится учитывать при применении лекарственных препаратов и различных воздействий на организм.

Гематоэнцефалический барьер

Гематоэнцефалический барьер - это совокупность морфологических структур, физиологических и физико-химических механизмов, функционирующих как единое целое и регулирующих потоки веществ между кровью и тканью мозга.

Морфологической основой гематоэнцефалического барьера являются эндотелий и базальная мембрана мозговых капилляров, интерстициальные элементы и гликокаликс, астроциты нейроглии, охватывающие своими ножками всю поверхность капилляров. В перемещении веществ через гематоэнцефалический барьер участвуют транспортные системы эндотелия капиллярных стенок, включающие везикулярный транспорт веществ (пино- и экзоцитоз), транспорт через каналы с участием или без участия белков-переносчиков, ферментные системы, модифицирующие или разрушающие поступающие вещества. Уже упоминалось, что в нервной ткани функционируют специализированные транспортные системы воды, использующие белки-аквапорины AQP1 и AQP4. Последние формируют водные каналы, регулирующие образование цереброспинальной жидкости и обмен воды между кровью и тканью мозга.

Капилляры мозга отличаются от капилляров других органов тем, что эндотелиальные клетки образуют непрерывную стенку. В местах контакта наружные слои эндотелиальных клеток сливаются, образуя так называемые «плотные контакты».

Гематоэнцефалический барьер выполняет для мозга защитную и регулирующую функции. Он защищает мозг от действия ряда веществ, образующихся в других тканях, чужеродных и токсичных веществ, участвует в транспорте веществ из крови в мозг и является важнейшим участником механизмов гомеостаза межклеточной жидкости мозга и ликвора.

Гематоэнцефалический барьер обладает избирательной проницаемостью для различных веществ. Некоторые биологически активные вещества, например катехоламины, практически не проходят через этот барьер. Исключение составляют лишь небольшие участки барьера на границе с гипофизом, эпифизом и некоторыми участками , где проницаемость гематоэнцефалического барьера для многих веществ высокая. В этих областях обнаружены пронизывающие эндотелий каналы и межэндотелиальные щели, по которым идет проникновение веществ из крови во внеклеточную жидкость мозговой ткани или в сами . Высокая проницаемость гематоэнцефалического барьера в этих областях позволяет биологически активным веществам (цитокинам, ) достигать тех нейронов гипоталамуса и железистых клеток, на которых замыкается регуляторный контур нейроэндокринных систем организма.

Характерной чертой функционирования гематоэнцефалического барьера является возможность изменения его проницаемости для ряда веществ в различных условиях. Тем самым гематоэнцефалический барьер способен, регулируя проницаемость, изменять взаимоотношения между кровью и мозгом. Регуляция осуществляется за счет изменения числа открытых капилляров, скорости кровотока, изменения проницаемости клеточных мембран, состояния межклеточного вещества, активности клеточных ферментных систем, пино- и экзоцитоза. Проницаемость ГЭБ может существенно нарушаться в условиях ишемии мозговой ткани, инфицирования, развития воспалительных процессов в нервной системе, ее травматическом повреждении.

Считается, что гематоэнцефалический барьер, создавая значительное препятствие для проникновения многих веществ из крови в мозг, вместе с тем хорошо пропускает такие же вещества, образовавшиеся в мозге, в обратном направлении — из мозга в кровь.

Проницаемость гематоэнцефалического барьерадля различных веществ сильно отличается. Жирорастворимые вещества, как правило, проникают через ГЭБ легче, чем водорастворимые . Легко проникают кислород, углекислый газ, никотин, этиловый спирт, героин, жирорастворимые антибиотики (хлорамфеникол и др.)

Нерастворимые в липидах глюкоза и некоторые незаменимые аминокислоты не могут проходить в мозг путем простой диффузии. Углеводы узнаются и транспортируются специальными переносчиками GLUT1 и GLUT3. Эта транспортная система настолько специфична, что различает стереоизомеры D- и L-глюкозы: D-глюкоза транспортируется, а L-глюкоза — нет. Транспорт глюкозы в ткань мозга нечувствителен к инсулину, но подавляется цитохалазином В.

Переносчики участвуют в транспорте нейтральных аминокислот (например, фенилаланина). Для переноса ряда веществ используются механизмы активного транспорта. Например, за счет активного транспорта против градиентов концентрации переносятся ионы Na + , К+ , аминокислота глицин, выполняющая функцию тормозного медиатора.

Таким образом, перенос веществ с использованием различных механизмов осуществляется не только через плазматические мембраны, но и через структуры биологических барьеров. Изучение этих механизмов необходимо для понимания сути регуляторных процессов в организме.



Понравилась статья? Поделитесь ей
Наверх