Стволовые клетки - свойства, классификация, получение, выращивание и использование. Общие принципы лечения стволовыми клетками. Технология выращивания искусственных органов на основе стволовых клеток

Возможность вырастить человеческий орган в пробирке и пересадить его человеку, нуждающемуся в пересадке — мечта трансплантологов. Ученые по всему миру работают над этим и уже научились делать ткани, небольшие работающие копии органов, и до полноценных запасных глаз, легких и почек нам на самом деле осталось совсем немного. Пока что органеллы используются в основном в научных целях, их выращивают, чтобы понять, как работают органы, как развиваются болезни. Но от этого до трансплантации всего несколько шагов. МедНовости собрали сведения о самых перспективных проектах.

Легкие . Ученые из Техасского университета вырастили легкие человека в биореакторе. Правда, без кровеносных сосудов такие легкие не функциональны. Однако команда ученых из Медицинского центра Колумбийского университета (Columbia University Medical Center, New York) недавно впервые в мире получили функциональное легкое с перфузируемой и здоровой сосудистой системой у грызунов ex vivo.

Ткани сердечной мышцы . Биоинженерам из университета Мичигана удалось вырастить в пробирке кусок мышечной ткани. Правда, полноценно сердце из такой ткани пока работать не сможет, она вдвое слабее оригинала. Тем не менее пока это самый сильный образец сердечной ткани.

Кости . Израильская биотехнологическая компания Bonus BioGroup использовалат трехмерные сканы для создания гелеобразного каркаса кости перед посевом стволовыми клетками, взятыми из жира. Кости, получившиеся в результате, они успешно пересадили грызунам. Уже планируются эксперименты по выращиванию человеческих костей по этой же технологии.

Ткани желудка . Ученым под руководством Джеймса Уэллса из Детского медицинского клинического центра в Цинциннати (Огайо) удалось вырастить «в пробирке» трехмерные структуры человеческого желудка при помощи эмбриональных стволовых клеток и из плюрипотентных клеток взрослого человека, перепрограммированных в стволовые. Эти структуры оказались способны вырабатывать все необходимые человеку кислоты и пищеварительные ферменты.

Японские ученые вырастили глаз в чашке Петри . Искусственно выращенный глаз содержал основные слои сетчатки: пигментный эпителий, фоторецепторы, ганглионарные клетки и другие. Трансплантировать его целиком пока возможности нет, а вот пересадка тканей — весьма перспективное направление . В качестве исходного материала были использованы эмбриональные стволовые клетки.

Ученые из корпорации Genentech вырастили простату из одной клетки . Молекулярным биологам из Калифорнии удалось вырастить целый орган из единственной клетки.
Ученым удалось найти единственную мощную стволовую клетку в простатической ткани, которая способна вырасти в целый орган. Таких клеток оказалось чуть меньше 1% от общего числа. В исследовании 97 мышам трансплантировали такую клетку под почку и у 14 из них выросла полноценная простата, способная нормально функционировать. Точно такую же популяцию клеток биологи нашли и в простате человека, правда, в концентрации всего 0,2%.

Сердечные клапаны . Швейцарские ученые доктор Саймон Хоерстрап (Simon Hoerstrup) и Дорта Шмидт (Dorthe Schmidt) из университета Цюриха (University of Zurich) смогли вырастить человеческие сердечные клапаны , воспользовавшись стволовыми клетками, взятыми из околоплодной жидкости. Теперь медики смогут выращивать клапаны сердца специально для неродившегося еще ребенка, если у него еще в зародышевом состоянии обнаружатся дефекты сердца.

Ушная раковина . Используя стволовые клетки, ученые вырастили . Эксперимент был проведен исследователями из Университета Токио (University of Tokyo) И Университета Киото (Kyoto University) под руководством Томаса Сервантеса (Thomas Cervantes).

Кожа. Ученые из Цюрихского университета (Швейцария) и университетской детской больницы этого города впервые сумели вырастить в лаборатории человеческую кожу, пронизанную кровеносными и лимфатическими сосудами . Полученный кожный лоскут способен почти полностью выполнять функцию здоровой кожи при ожогах, хирургических дефектах или кожных болезнях.

Поджелудочная железа . Ученые впервые создали , способные вырабатывать инсулин. Еще одна попытка вылечить диабет I типа.

Почки . Ученые из австралийского университета Квинсленда научились выращивать искусственные почки из стволовых клеток кожи. Пока это лишь маленькие органоиды размером 1 см, но по устройству и функционированию они практически идентичны почкам взрослого человека.

Постиндустриальные темпы развития человечества, а именно науки и техники, велики настолько, что их невозможно было представить еще 100 лет назад. То, о чем раньше можно было прочитать только в научно-популярной фантастике, теперь появилось и в реальном мире.

Уровень развития медицины 21-го века выше, чем когда-либо. Заболевания, считавшиеся смертельно опасными раньше, в наши дни успешно лечатся. Однако еще не решены проблемы онкологии, СПИДа и множества других заболеваний. К счастью, в ближайшем будущем для этих проблем найдется решение, одним из которых послужит выращивание органов человека.

Основы биоинженерии

Наука, использующая информационный базис биологии и пользующаяся аналитическим и синтетическим методами для решения своих задач, зародилась не так давно. В отличие от обычной инженерии, которая для своей деятельности применяет технические науки, по большей части математику и физику, биоинженерия идет дальше и пускает в ход инновационные методы в виде молекулярной биологии.

Одной из главных задач новоиспеченной научно-технической сферы является выращивание искусственных органов в лабораторных условиях с целью их дальнейшей пересадки в тело пациента, у которого отказал из-за повреждения или в силу изношенности тот или иной орган. Опираясь на трехмерные клеточные структуры, ученые смогли продвинуться в изучении влияния различных болезней и вирусов на деятельность человеческих органов.

К сожалению, пока это не полноценные органы, а лишь органоиды - зачатки, незаконченная совокупность клеток и тканей, которые можно использовать только в качестве экспериментальных образцов. Их работоспособность и уживчивость проверяются на подопытных животных, в основном, на разных грызунах.

Историческая справка. Трансплантология

Росту биоинженерии как науки предшествовал долгий период развития биологии и других наук, целью которых было изучение человеческого тела. Еще в начале 20-го века толчок своему развитию получила трансплантология, задачей которой было изучение возможности пересадки органа донора другому человеку. Создание методик, способных консервировать на некоторое время донорские органы, а также наличие опыта и детальных планов по трансплантации позволили хирургам со всего мира в конце 60-х годов успешно пересадить такие органы, как сердце, легкие, почки.

На данный момент принцип трансплантации является наиболее действенным в случае, если пациенту угрожает смертельная опасность. Основная проблема заключается в остром дефиците донорских органов. Больные могут годами ждать своей очереди, так ее и не дождавшись. Кроме того, существует высокий риск того, что пересаженный донорский орган может не прижиться в теле реципиента, так как иммунной системой пациента он будет рассматриваться в качестве инородного предмета. В противоборство данному явлению были изобретены иммунодепрессанты, которые, однако, скорее калечат, чем лечат - иммунитет человека катастрофически ослабевает.

Преимущества искусственного создания над трансплантацией

Одно из главных конкурентных отличий метода выращивания органов от их пересадки от донора заключается в том, что в лабораторных условиях органы могут производиться на основе тканей и клеток будущего реципиента. В основном, используются стволовые клетки, обладающие способностью дифференцироваться в клетки определенных тканей. Данный процесс ученый способен контролировать извне, что существенно снижает риск будущего отторжения органа иммунной системой человека.

Более того, с помощью метода искусственного выращивания органов можно производить их неограниченное количество, тем самым удовлетворяя жизненно важные потребности миллионов людей. Принцип массового производства значительно снизит цены на органы, спасая миллионы жизней и значительно увеличивая выживаемость человека и отодвигая дату его биологической смерти.

Достижения биоинженерии

На сегодняшний день ученые в состоянии выращивать зачатки будущих органов - органоиды, на которых испытывают различные болезни, вирусы и инфекции с целью проследить процесс заражения и разработать тактику противодействия. Успешность функционирования органоидов проверяют посредством их трансплантации в тела животных: кроликов, мышей.

Стоит также отметить, что биоинженерия достигла определенных успехов в создании полноценных тканей и даже в выращивании органов из стволовых клеток, которые, к сожалению, пока невозможно пересадить человеку в силу их неработоспособности. Однако на данный момент ученые научились создавать искусственным путем хрящи, сосуды и другие соединительные элементы.

Кожа да кости

Не так давно у ученых Колумбийского университета получилось создать фрагмент кости, по структуре схожий с суставом нижней челюсти, соединяющим ее с основанием черепа. Фрагмент был получен посредством использования стволовых клеток, как и при выращивании органов. Чуть позже израильской компании Bonus BioGroup удалось изобрести новый метод воссоздания человеческой кости, который был с успехом испробован на грызуне - искусственно выращенная кость была пересажена в одну из его лап. В данном случае опять же были использованы стволовые клетки, только получены они были из жировой ткани пациента и в последующем помещены на гелеобразный каркас кости.

Начиная с 2000-х годов, для лечения ожогов доктора применяют специализированные гидрогели и методы естественной регенерации поврежденных участков кожи. Современные же экспериментальные методики позволяют вылечивать сильнейшие ожоги за несколько дней. Так называемый Skin Gun распыляет особую смесь со стволовыми клетками пациента на поврежденную поверхность. Также наблюдаются крупные успехи в создании стабильно функционирующей кожи с кровеносными и лимфатическими сосудами.

Недавно ученым из Мичигана удалось вырастить в лабораторных условиях часть мышечной ткани, которая, правда, вдвое слабее оригинальной. Точно так же ученые в Огайо создали трехмерные ткани желудка, которые были в состоянии производить все необходимые для пищеварения ферменты.

Японские же ученые совершили почти невозможное - вырастили полностью функционирующий человеческий глаз. Проблема трансплантации заключается в том, что присоединить зрительный нерв глаза к головному мозгу пока не представляется возможным. В Техасе искусственным путем в биореакторе удалось также вырастить легкие, но без кровеносных сосудов, что ставит под сомнение их работоспособность.

Перспективы развития

Совсем недолго осталось до того момента в истории, когда человеку можно будет пересадить большинство органов и тканей, созданных в искусственных условиях. Уже сейчас ученые со всего мира располагают разработками проектов, экспериментальными образцами, некоторые из которых не уступают оригиналам. Кожу, зубы, кости, все внутренние органы по прошествии некоторого времени можно будет создавать в лабораториях и продавать нуждающимся людям.

Новые технологии также ускоряют развитие биоинженерии. 3D-печать, получившая распространение во многих сферах человеческой жизни, будет полезной и в рамках выращивания новых органов. 3D-биопринтеры уже экспериментально используются с 2006 года, а в будущем они смогут создавать трехмерные работоспособные модели биологических органов, перенося культуры клеток на биосовместимую основу.

Общий вывод

Биоинженерия как наука, целью которой является выращивание тканей и органов для их дальнейшей трансплантации, зародилась не так давно. Семимильный темп, в котором она шагает по пути прогресса, характеризуется существенными достижениями, которые в будущем спасут миллионы жизней.

Выращенные из стволовых клеток кости и внутренние органы сведут на нет нужду в донорских органах, количество которых и так находится в состоянии дефицита. Уже сейчас ученые располагают множеством разработок, результаты которых пока не слишком продуктивны, но имеют огромный потенциал.

Современная медицина может творить настоящие чудеса. С каждым годом ученые находят все новые и новые методы терапии различных патологических состояний, и особенный интерес представляют собой новейшие технические достижения. Врачи уверены, что совсем скоро им удастся лечить болезни на расстоянии, проходить диагностику всего организма за считанные минуты и предупреждать заболевания с использованием современных компьютерных технологий. И такая казалось бы фантастика, как выращивание органов человека для пересадки, понемногу становится реальностью.

На сегодняшний день ученые ведут множество активных разработок и исследований, которые касаются органов человеческого тела. Наверное, каждый из нас слышал, что в современном мире огромное количество людей нуждается в пересадке органов или тканей, и никакие объемы донорских материалов не могут покрыть эту потребность. Поэтому ученые не первый год занимаются разработкой технологий, которые позволяют справиться с такой ситуацией. И на сегодняшний день продолжается активная разработка метода «выращивания» органов. В качестве исходного материала при этом используют стволовые клетки организма, способные адаптироваться под особенности любого органа.

Искусственное выращивание органов человека

На сегодняшний день уже изобретено несколько технологий для активного выращивания органов из стволовых клеточек. Еще в 2004 году ученым удалось создать полностью функциональные капиллярные сосуды. А в 2005 году были выращены полноценные клеточки головного мозга и нервной системы. В 2006 году швейцарским медикам удалось вырастить клапаны сердца, а британским – клеточки тканей печени. В том же году американцы создали полноценный орган – мочевой пузырь, а в 2007 году была получена роговица глаза. Еще через год ученым удалось вырастить новое сердце, используя в качестве основы каркас старого. Для такого научного эксперимента использовалось сердце взрослой крысы, которое поместили в особенный раствор, удаливший из органа все мышечные ткани. Далее полученный каркас засеяли клетками сердечной мышцы, полученными от новорожденной крысы. Уже спустя две недели орган стал способен перекачивать кровь.

На сегодняшний день многие медики уверены, что в скором времени трансплантация уже не будет дорогостоящей операцией для избранных, для получения органа нужна будет лишь символическая плата.

Так за последние несколько лет было проведено ряд оперативных вмешательств по пересадке искусственно выращенной трахеи, на которую были нанесены собственные клеточки пациента, выделенные из костного мозга. Благодаря таким клеткам организм рецепиента не отторгает пересаженный орган, он нормально приживается и сам подстраивается под новые условия. Такая операция позволяет пациентам вновь самостоятельно дышать и говорить.

Выращивание человеческих органов для трансплантации другим методом

Еще одним современнейшим достижением науки можно назвать 3d-печать органов. Подобная чудесная методика осуществляется при помощи специальной биохимической машины. Самые первые опыты проводились на классических струйных принтерах. Учеными было выяснено, что клеточки человеческого организма имеют такой же размер, как и капли стандартных чернил. Если перевести эти данные на цифры получится размер в 10 микрон. А при биопечати девяносто процентов клеточек остаются жизнеспособными.

На сегодняшний день специалистам удалось напечатать ушные раковины, сердечные клапаны, а также сосудистые трубки. Кроме всего прочего 3d-принтер позволяет создать костные ткани, и даже кожу, подходящую для дальнейшей пересадки.

Печать органов проводится при помощи специального фоточувствительного гидрогеля, особенного порошкового наполнителя либо жидкости. Рабочий материал подают из дозатора покапельно или постоянной струей. Так создаются мягкие либо хрящевые ткани. Для получения костного импланта проводят послойное наплавление полимеров, имеющих натуральное происхождение.

Выращивание

Британские ученые вплотную занялись проблемами стоматологии, точнее ортодонтии. На сегодняшний день медики активно разрабатывают технологию восстановления утраченных зубов – при этом подразумевается, что зуб будет выращиваться самостоятельно непосредственно в ротовой полости пациента.

Поначалу стоматологи будут создавать «зачаток зуба» - используя эпителий десны и стволовые клетки. Такая манипуляция проводится в пробирке. После клетки подвергаются стимуляции особенным импульсом, который заставит их превратиться в нужный тип зуба. Затем такой зачаток, находясь в пробирке, формируется. Лишь после этого его помещают внутрь ротовой полости. Там он имплантируется и достигает нужного размера самостоятельно.

Итак, на сегодняшний день нет ни одной разновидности биологических тканей, которые бы не попробовала выращивать современная наука. Но, несмотря на достигнутые успехи, заменить искусственно выращенными аналогами пока невозможно – это дело будущего.

Народные рецепты

Народные лекарства помогут избежать необходимости пересадки органов. Они могут использоваться для лечения самых разных патологических состояний, в том числе и опасной почечной недостаточности, которая часто требует трансплантации почки.

При таком патологическом состоянии знахари советуют соединить равные доли измельченных листиков брусники, семян льна, цветков календулы и травки трехцветной фиалки. Пару столовых ложек полученного сбора заварите одним литром кипящей воды. Проварите такое средство десять минут на огне минимальной мощности, после перелейте в термос на двенадцать часов. Процеженный напиток принимайте по четверти-половинке стакана трижды на день примерно за час до трапезы.

Целесообразность применения народных средств нужно обязательно обсудить с врачом.

Екатерина, www.сайт
Google

- Уважаемые наши читатели! Пожалуйста, выделите найденную опечатку и нажмите Ctrl+Enter. Напишите нам, что там не так.
- Оставьте, пожалуйста, свой комментарий ниже! Просим Вас! Нам важно знать Ваше мнение! Спасибо! Благодарим Вас!

Улучшение состояние здоровья человека, спасение жизни, увеличение ее продолжительности — эти вопросы были, есть и будут самыми актуальными для человечества. Именно поэтому тема выращивания искусственных органов в России в 2018 году занимает умы российских ученых, стоит на повестке дня Министерства здравоохранения и широко обсуждается в СМИ.

Дает большие надежды, что отрасль научной медицины — биоинженерные технологии, будет, наконец, иметь полноценную законодательную основу. Это позволит заниматься разработками, проводить доклинические и клинические исследования, практически использовать клеточные продукты, руководствуясь и опираясь на нормативно-правовую базу.

Закон о биомедицинских клеточных продуктах

Главная для ученых и медиков — в России с января 2017 года вступил в силу закон «О биомедицинских клеточных продуктах».

Он разработан в рамках реализации стратегии развития науки в Российской Федерации до 2025 года и направлен на регулирование отношений в связи с разработкой, исследованиями, регистрацией, производством и контролем качества, применением в лечебной практике биологических медицинских клеточных продуктов (БМКП).

Также это закон обеспечит законодательный базис для создания в сфере здравоохранения новой индустрии, которая производством и использованием клеточного продукта решит проблемы восстановления функций и структур тканей тела человека поврежденных заболеваниями, травмами, нарушениями при внутриутробном развитии.

Основной целью федерального закона является закрепление обособленного урегулирования деятельности по обращению БМКП, которая до недавнего времени была разрозненной, неполной и в основном незаконной.

Теперь организации и предприятия, которые занимались биопродуктами нелегально, парализованы. Именно поэтому принятию закона было оказано сопротивление и создавалось множество препятствий. Негативные последствия от принятия закона ощутят только те, кто осуществлял деятельность в области применения клеточного материала нелегально, то есть, нарушали закон.

Для отрасли в целом, закон обеспечивает цивилизованные пути развития, расширение возможностей, а для пациентов гарантирует получение качественного, безопасного продукта.

Новая эпоха в медицине

Вместе с поиском и разработкой эффективных методов лечения и восстановления организма человека, российская медицина ведет активную работу над созданием искусственных органов. Этой темой стали заниматься более пятидесяти лет назад, с того времени, когда методика пересадки донорских органов из теории перешла в практику.

Донорство спасло много жизней, но этот метод имеет значительный ряд проблем — нехватка донорских органов, несовместимость, отторжение иммунной системой. Поэтому идея выращивания искусственных органов с энтузиазмом была подхвачена учеными медиками всего мира.

Методика замещения поврежденных тканей искусственным клеточным продуктом, введенным извне, или путем активизирования собственных клеток основывается на жизнеспособности БМКТ и способности постоянно находиться в организме пациента. Это дает большие возможности для результативного лечения болезней и спасения многих жизней.

На сегодняшний день применение биоинженерных технологий в медицине достигло значительных результатов. Уже апробированы методики выращивания некоторых органов непосредственно в организме человека, так и вне тела. Есть возможность вырастить орган из клеток того человека, которому он впоследствии будет вживлен.

Применение искусственно созданных простых тканей уже имеют место в клинической практике. По словам Юрия Суханова, исполнительного директора Объединения экспертов по биомедицинским клеточным технологиям и регенеративной медицине, российскими учеными подготовлены к испытаниям ряд важных и необходимых продуктов.

«Это противораковые вакцины на основе живых клеток человека, препараты для лечения диабета с помощью инсулинпродуцирующих клеток, которые будут имплантироваться пациенту. Разумеется кожа – ожоги, раны, диабетическая стопа. Выращивание из клеток хряща, кожи, роговицы, уретры. И, конечно, клеточные вакцины – самое интересное и эффективное, что сейчас есть» — отметил Юрий Суханов.

Российские ученые создали искусственную печень и провели доклинические испытания продукта на животных, которые показали очень хорошие результаты. Элемент выращенного органа был имплантирован в поврежденные ткани печени животных.

В результате клетки искусственной печени способствовали регенерации тканей, и через время поврежденный орган полностью восстановился. При этом не произошло отрицательного влияния на продолжительность жизни подопытного животного.

Регенеративная медицина — это наше будущее, которое закладывается уже сегодня. Возможности у нее колоссальные. Тем более что традиционная медицина достигла определенного уровня, и сейчас не может предложить результативных методов лечения многих опасных болезней, уносящих миллионы жизней.

Медицинской науке необходима революция, мощный прорыв, которым станет приход клеточных технологий. Победить неизлечимые заболевания, снизить продолжительность и стоимость лечения, сделать доступным замену утраченного или нежизнеспособного органа и таким образом спасти и продлить жизнь — все это нам дает новая перспективная отрасль медицинской науки — тканевая инженерия.

Закон «О биомедицинских клеточных продуктах» принятый в 2017 году, начал полноценно работать. И теперь ученые имеют гораздо больше возможностей для новых исследований и открытий в области клеточных технологий и выращивания искусственных органов в России.

Первая операция по трансплантации органов из клеток самого пациента пройдет в Краснодаре, сейчас заканчиваются последние приготовления к ней. Всего в мире было проведено две таких трансплантации, для российских же хирургов это первый опыт. Раньше в стране пересаживали только донорские органы.

"Это искусственно выращенная трахея, на которую также будут нанесены собственные клетки пациента", - объясняет главный врач Краснодарской краевой клинической больницы № 1 Владимир Порханов.

Каркас для будущего органа сконструировали в американской и шведской лабораториях из нанокомпозитного материала.

Это точная копия трахеи пациента, которому требуется операция. Внешне выглядит как трубка из упругого пористого пластика, на которую врачи высаживают собственные клетки пациента, выделенные из костного мозга. За 2-3 дня формируется основа трахеи. Организм пациента ее не только не отторгает, а наоборот, пересаженный орган сам начинает подстраиваться под новые условия.

"Потом клетки будут дифференцироваться, создавать собственное микроокружение, продуцировать ткань. Ведь клетка, когда живая, в ней много процессов происходит. Это будет иметь место в своем организме", - рассказывает врач-трансфузиолог, сотрудник лаборатории культивирования Краснодарской краевой клинической больницы № 1 Ирина Гилевич.

Паоло Маккиарини по пунктам изучает с хирургами краснодарской больницы ход будущей операции. Он автор методики по пересадке искусственно выращенной трахеи. Первую операцию провел в прошлом году в Швеции. Длилась она 12 часов. Сколько времени займет эта трансплантация, врачи не говорят. Ведь впервые в мире будет пересажена не только искусственная трахея, но и часть гортани.

"Во время операции будет выполнено иссечение и удалена вся рубцовая ткань, то есть надо будет удалить часть гортани, потом высвободится полость и на это место поставить трахею. Это очень сложно, потому что рядом голосовые связки", - объясняет профессор регенеративной хирургии Каролинского института (Швеция) Паоло Маккиарини.

Искусственные органы будут пересажены двум пациентам. Это люди, получившие травмы трахеи несколько лет назад. За это время им было сделано множество операций, улучшение после которых так и не последовало. Трансплантация для таких больных - единственный шанс на выздоровление и полноценную жизнь.

Пока жизнь больных расписана по графику и в основном состоит из запретов: нельзя купаться, нельзя разговаривать и даже смеяться. Дыхательные пути открыты, в горле трахеостома - специальная трубка, через которую пациенты сейчас дышат.

"После этой операции пациентка сможет самостоятельно спокойно говорить, дышать", - говорит Паоло Маккиарини.

В будущем, каркасы для искусственных органов планируют создавать и в России. Профессор Маккиарини вместе с Кубанским медицинским университетом выиграли правительственный мегагрант на проведение исследовательских работ по регенерации тканей дыхательных путей и легкого. Сейчас на территории вуза строят лабораторию, в которой ученые займутся изучением механизмов регенерации.

"Здесь будут отрабатывать методики и технологии выделения клеток, засевание на эти каркасы клеток, выращивание клеток и отрабатывать научные моменты", - рассказывает ректор Кубанского государственного медицинского университета Сергей Алексеенко.

Результаты исследований ученых облегчат жизнь тяжело больным людям, больше им не придется ждать подходящего донора. В будущем ученые планируют использовать подобную методику при пересадке кожи, искусственных артерий, сердечных клапанов и более сложных органов.

В День медицинского работника, который отмечается сегодня, в 17:20 Первый канал покажет церемонию вручения национальной премии "Призвание". Она присуждается лучшим врачам за выдающиеся достижения.



Понравилась статья? Поделитесь ей
Наверх